PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on ship trajectory extraction based on multiattribute DBSCAN optimisation algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the vigorous development of maritime traffic, the importance of maritime navigation safety is increasing day by day. Ship trajectory extraction and analysis play an important role in ensuring navigation safety. At present, the DBSCAN (density-based spatial clustering of applications with noise) algorithm is the most common method in the research of ship trajectory extraction, but it has shortcomings such as missing ship trajectories in the process of trajectory division. The improved multi-attribute DBSCAN algorithm avoids trajectory division and greatly reduces the probability of missing sub-trajectories. By introducing the position, speed and heading of the ship track point, dividing the complex water area and vectorising the ship track, the function of guaranteeing the track integrity can be achieved and the ship clustering effect can be better realised. The result shows that the cluster fitting effect reaches up to 99.83%, which proves that the multi-attribute DBSCAN algorithm and cluster analysis algorithm have higher reliability and provide better theoretical guidance for the analysis of ship abnormal behaviour.
Rocznik
Tom
Strony
136--148
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Shanghai Maritime University, Haigang streat, 201306 ShangHai, China
autor
  • Shanghai Maritime University, Haigang streat, 201306 ShangHai, China
autor
  • Shanghai Maritime University, Haigang streat, 201306 ShangHai, China
autor
  • Shanghai Maritime University, Haigang streat, 201306 ShangHai, China
Bibliografia
  • 1. Yang, B. International standard of automatic ship identification system and its formulation. Standardization of Transportation, 2002 (01):42-44.
  • 2. Zhao, L., Shi, G. A method for simplifying ship trajectory based on improved Douglas-Peucker algorithm. Ocean Engineering , Vol. 166, 2018: 37-46.
  • 3. Zhao, L., Shi, G., Yang, J. Ship trajectories pre-processing based on AIS data. Journal of Navigation, 2018.
  • 4. Wang, J., Zhu, C., Zhou, Y., Zhang, W. Vessel Spatiotemporal Knowledge Discovery with AIS Trajectories Using Co-clustering. Journal of Navigation, Nov 2017.
  • 5. Zhang, Y., Shi, G., Li, S., Zhang, S. Vessel trajectory online multi-dimensional simplification algorithm. Journal of Navigation, 2020.
  • 6. Zhang, L., Meng, Q., Xiao, Z., Fu, X. A novel ship trajectory reconstruction approach using AIS data. Ocean Engineering, 2018.
  • 7. Yan, Z., Xiao, Y., Cheng, L., He, R., Ruan, X., Zhou, X., Li, M., Bin, R. Exploring AIS data for intelligent maritime routes extraction. Applied Ocean Research, 2020.
  • 8. Wei, Z., Xie, X., Zhang, X. AIS trajectory simplification algorithm considering ship behaviours. Ocean Engineering, 2020.
  • 9. Li, H., Liu, J., Wu, K., Yang, Z., Liu, R.W., Xiong, N. Spatiotemporal vessel trajectory clustering based on data mapping and density. IEEE Access, 2018, 6:58939-58954.
  • 10. Sheng, P., Yin, J. Extracting shipping route patterns by trajectory clustering model based on AIS data. Sustainability, 2018, 10(2018):2327.
  • 11. Xiao, X., Shao, Z., Pan, J., Ji, X. Ship trajectory clustering model based on AIS information and its application. China Navigation, 2015, 38(02):82-86.
  • 12. Zhou, H., Chen, Y., Chen, L. Clustering analysis and application of ship trajectory. Computer Simulation, 2020, 37(10):113-118+199.
  • 13. Cui, K. Research on ship AIS trajectories prediction method based on machine learning. Zhengzhou University, 2020.
  • 14. Liu, Y., Shi, B. Research on ship track clustering technology based on skeleton extraction. Information Technology, 2020, 44(03):50-53+58.
  • 15. Jiang, Y., Xiong, Z., Tang, J. Ship trajectory clustering algorithm based on trajectory segment DBSCAN. China Navigation, 2019, 42(03):1-5.
  • 16. Zhao, L., Shi, G., Yang, J. Adaptive hierarchical clustering of ship trajectory based on DBSCAN algorithm. China Navigation, 2018, 41(03):53-58.
  • 17. Peng, X., Gao, S., Chu, X., He, Y., Lu, C. Clustering method of ship trajectory based on Spark. China Navigation, 2017, 40(03):49-53+68
  • 18. Frey, B.J., Dueck, D. Clustering by passing message between data points. Science, 2007, 315(5814):972-976.
  • 19. Jain, A.K., Dubes, R.C. Algorithms for clustering data. Technometrics, 2015, 32(32):227-229.
  • 20. Yang, W., Long, H., Shao, Y., Du, Q. Research on density calculation based on Chebyshev distance and clustering method of K-means. Communications Technology, 2019, 52(04):833-838.
  • 21. Chen, B. Research on spatio-temporal similarity of vehicle trajectories based on clustering algorithm. Fujian Normal University, 2015.
  • 22. Design and implementation of ship trajectory clustering system based on bright [AIS]. Dalian University, 2016.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0bc355d1-84f6-4bdd-8bfa-2b17cf667c4a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.