Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Virtual reality (VR) has become a realistic alternative to conventional learning methods in numerous fields including military training. Accurate and precise tracking of a user wearing a head-mounted display is necessary to achieve an immersive VR experience. The widely available SteamVR system, where licensed users can design and construct trackers optimized for a given application can be an alternative to very expensive professional motion tracking. This paper presents the complete design process of a SteamVR tracker dedicated to a shooting simulation in a VR environment. We describe the optimization and simulation of the tracker’s shape and configuration of the sensors. In the simulation phase the developed model had better parameters than its commercial counterparts. Next, the optimized prototype was constructed and configured. The dedicated and automated measuring arrangement provided experimental verification of the tracker’s performance. Tracking performance as well as the accuracy and precision of both position and orientation measurements were determined and compared with simulations, which proved that the simulation software can accurately predict selected properties of the proposed tracker.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
601--614
Opis fizyczny
Bibliogr. 17 poz., rys., wykr., wzory
Twórcy
autor
- Military University of Technology, Institute of Optoelectronics, gen. Sylwestra Kaliskiego, 2, 00-908, Warsaw, Poland
autor
- Military University of Technology, Institute of Optoelectronics, gen. Sylwestra Kaliskiego, 2, 00-908, Warsaw, Poland
autor
- Military University of Technology, Institute of Optoelectronics, gen. Sylwestra Kaliskiego, 2, 00-908, Warsaw, Poland
autor
- Military University of Technology, Institute of Optoelectronics, gen. Sylwestra Kaliskiego, 2, 00-908, Warsaw, Poland
Bibliografia
- [1] Soetedjo, A. & Nurcahyo, E. (2011). Developing of Low Cost Vision-Based Shooting Range Simulator. IJCSNS International Journal of Computer Science and Network Security, 11(2) 109-113. http://eprints.itn.ac.id/3192/
- [2] Glogowski, T. Hlosta, P. Stepniak, S. & Swiderski W. (2017). Optoelectronics applications in multimedia shooting training systems: SPARTAN. Proceedings of SPIE Security + Defence, Poland. https://doi.org/10.1117/12.2277002
- [3] Fung, J., Richards, C. L., Malouin, F., McFadyen, B. J. & Lamontagne, A. (2006). A treadmill and motion coupled virtual reality system for gait training post-stroke. CyberPsychology & Behavior, 9(2), 157-162. https://doi.org/10.1089/cpb.2006.9.157
- [4] Chan, J. C., Leung, H., Tang, J. K., & Komura, T. (2010). A virtual reality dance training system using motion capture technology. IEEE Transactions on Learning Technologies, 4(2), 187-195. https://doi.org/10.1109/TLT.2010.27
- [5] Hilfert, T. & König, M. (2016). Low-cost virtual reality environment for engineering and construction. Visualization in Engineering, 4(1). https://doi.org/10.1186/s40327-015-0031-5
- [6] Bogatinov, D., Lameski, P., Trajkovik, V., & Trendova, K. M. (2017). Firearms training simulator based on low cost motion tracking sensor. Multimedia Tools and Applications, 76(1), 1403-1418. https://doi.org/10.1007/s11042-015-3118-z
- [7] Gourlay, M. J. & Held, R. T. (2017). Head-Mounted-Display Tracking for Augmented and Virtual Reality. Information Display, 33(1) 6-10. https://doi.org/10.1002/j.2637-496X.2017.tb00962.x
- [8] Mihelj, M., Novak, D. & Beguš, S. (2014). Degrees of Freedom, Pose, Displacement and Perspective. In Virtual Reality Technology and Applications, 68, 17-34. https://doi.org/10.1007/978-94-007-6910-6_2
- [9] Harvey, C., Selmanovic, E., O’Connor, J. & Chahin, M. (2018). Validity of virtual reality training for motor skill development in a serious game. Proceedings of 10th International Conference on Virtual Worlds and Games for Serious Applications (VS-Games), Germany. https://doi.org/10.1109/VS-Games.2018.8493447
- [10] Anthes, C., Wiedemann, M. & Kranzlmüller, D. (2016). State of the Art of Virtual Reality Technology. Proceedings of EEE Aerospace Conference, United States. https://doi.org/10.1109/AERO.2016.7500674
- [11] van der Kruk, E. and Reijne, M. M. (2018). Accuracy of human motion capture systems for sport applications; state-of-the-art review. European Journal of Sport Science, 18(6) 806-819. https://doi.org/10.1080/17461391.2018.1463397
- [12] Yates, A., & Selan, J. (2019). Positional tracking systems and methods (U.S. Patent No. 10,338,186). U.S. Patent and Trademark Office. https://patents.google.com/patent/KR20170106301A/en.
- [13] Niehorster, D. C., Li, L. & Lappe, M. (2017). The accuracy and precision of position and orientation tracking in the HTC vive virtual reality system for scientific research. I-Perception, 8(3). https://doi.org/10.1177/2041669517708205
- [14] Ng, A. K. T., Chan, L. K. Y. & Lau, H. Y. K. (2017). A low-cost lighthouse-based virtual reality head tracking system. Proceedings of International Conference on 3D Immersion (IC3D), Belgium. https://doi.org/10.1109/IC3D.2017.8251910
- [15] Sommer, B. B., Weisenhorn, M., Ernst, M. J., Meichtry, A., Rast, F. M., Kleger, D., Schmid, P., Lünenburger, L. & Bauer, C. M. (2019). Concurrent validity and reliability of a mobile tracking technology to measure angular and linear movements of the neck. Journal of Biomechanics, 96, 109340. https://doi.org/10.1016/j.jbiomech.2019.109340
- [16] Weichert, F., Bachmann, D., Rudak, B., & Fisseler, D. (2013). Analysis of the accuracy and robustness of the leap motion controller. Sensors, 13(5), 6380-6393. https://doi.org/10.3390%2Fs130506380
- [17] Zheng, Y., Kuang, Y., Sugimoto, S., Astrom, K. & Okutomi, M. (2013). Revisiting the PnP problem: A fast, general and optimal solution. Proceedings of the IEEE International Conference on Computer Vision, USA, 2344-2351. https://doi.org/10.1109/ICCV.2013.291
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0bc24e9f-42e9-4fc0-8cc8-07f9dd859fe0