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1. Introduction

EEG signals are used to study the activities of the brain such 
in pathology, as detection of epileptic seizure from other types 
of signal such as Alzheimer’s disease (AD) and in Brain-Com-
puter Interface [1–8]. The detection of neurological disease by 
visual scanning of a patient’s EEG data is a time-consuming 
process. Additionally, long-term treatment with antiepileptic 
drugs can change the EEG activity. The detection of pathology 
usually is possible only in long-term EEG recordings, which 
significantly prolongs the time of correct diagnosis. Automated 
systems can shorten the waiting time for diagnosis. The main 
problems relate to the elimination of artifacts and the analy-
sis of EEG signal characteristics. A large part of the artifacts 
may imitate pathological stages such as epilepsy or demen-
tia. Visual inspection may be insufficient. In modern medical 
systems more emphasis is put on improvement of hardware 
and software. Time, frequency and time-frequency analysis of 
EEG signals have emerged in recent years [9–16]. Biological 
signals are non-stationary. Therefore, time-frequency decom-
position are a central part of EEG data analysis [5, 16]. The 
time-frequency representation family is large and includes e.g.: 

Short-Time Fourier Transform, Gabor, Wigner-Vile Transform 
and Cone-Shaped Transform. Short-Time Fourier Transform 
(STFT) enables the extraction of information how its spec-
trum changes in the time [17]. The intensive research on EEG 
signal processing contributed to developing new classification 
method. Naive Bayes Classifier (NBC), Linear Discriminant 
Analysis (LDA) and Fuzzy Mutual Information (FMI) are the 
most common classifiers. The comparison of different kernels 
(Linear, Sigmoid and Grid) of Support Vector Machine (SVM) 
classifier on three classes (normal, interictal and ictal) with 
Approximate Entropy features extracted from multichannel 
EEG signals has been presented in [18]. The highest classi-
fication accuracy of 98.9% has been achieved using by Grid 
SVM kernel. The Approximate Entropy with Wavelet Trans-
form has been used in [19]. The classifier is Surrogate Data 
Analysis. The obtained results (96.8%) are slightly worse. The 
Naive Bayesian Classifier is an algorithm based on cluste-
ring of data and applying Bayes theorem on the clustered 
data [17]. Rajaguru at al. proposed the use of the LDA and 
NBC to reduce the dimensions of the recorded EEG data. The 
highest accuracy (99.27%) is obtained when the dimensionality 
reduction technique used is LDA and classified with Particle 
Swarm Optimization Based Sparse Representation Classifier 
[20]. Yaik et al. applied Naive Bayesian Classifier for detec-
tion ictal (during seizure) and interictal (inter seizure) signals. 
The prediction accuracy of EEG signals is 95.14% using Naive 
Bayes Classifiers (94.10% for ictal and 97% for interictal) [21]. 
Sole-Casals and Vialatte showed that a strategy for semi-auto-
matic cleaning based on blind source separation may improve 
the specificity of Alzheimer screening using markers of EEG 
artifacts: kurtosis, sample entropy, zero-crossing rate and frac-
tal dimension [22]. Azami and al. classified the controls versus 
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EEG signals are non-stationary and used to study the activities of the brain in pathology. 
Epilepsy belongs to the most common neurological diseases. In the paper, real EEG sequences 
described by a doctor as normal and epileptic (ictal and interictal) are used. In classification process 
these sequences are divided into training and testing subsets. The classification are performed using 
Short-Time Fourier Transform. Based on obtained spectrum four features have been extracted. The 
study presents experiments based on the analysis and classification of EEG signals using various 
methods, including Linear Discriminant Analysis, Naive Bayes Classifier and Gaussian Naive Bayes 
Classifier. The results indicated that used techniques a potential to be applied within an automatic 
neurologic diseases diagnosis system and could thus further increase the number of correct 
diagnoses. 
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AD subjects using the NBC. The classification ratios of ave-
rage of slope values of the multiscale entropy and multivariate 
entropy profile below 72% have been obtained [23].

An automated system able to accurately differentiate between 
normal and interictal EEG signals can be used to diagnose epi-
lepsy, while a system that can accurately differentiate between 
interictal and ictal EEG signals can be used to detect seizures. 
The purposes of this paper shall be discussing Short-Time Fou-
rier transform of EEG feature extraction methods and compar-
ing Naive Bayes Classifier and Linear Discriminant Analysis 
to detection three diagnostic cases: normal, ictal (during sei-
zure) and interictal. Different sizes of training and testing group 
are used.
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The EEG data used in this study come from the Epilepsy 
Centre at the University of Bonn. The EEG data sets were 
recorded with a 128-channel amplifier system. The EEG data-
base including 300 sequences were determined by the doctor 
as normal and epileptic: ictal and interictal. The EEG dataset 
corresponding to healthy subjects was taken from the EEG 
recordings of 5 healthy persons, who were relaxed in an awaken 
state, using the standardized electrode placement technique. 

Fig. 1. Time-frequency EEG signal representation using STFT in 
normal
Rys. 1. Czasowo-częstotliwościowa reprezentacja sygnału EEG z użyciem 
STFT w normie
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Fig. 2. Time-frequency EEG signal representation using STFT – 
occurrence of epileptic seizure
Rys. 2. Czasowo-częstotliwościowa reprezentacja sygnału EEG z użyciem 
STFT – wystąpienie napadu padaczkowego

Fig. 3. Time-frequency EEG signal representation using STFT in 
selected interictal sequence
Rys. 3. Czasowo-częstotliwościowa reprezentacja sygnału EEG z użyciem 
STFT wybranej międzynapadowej sekwencji

The epileptic EEG signals were recorded from 5 epileptic 
patients and were taken from the intracranial EEG recordings 
during presurgical diagnosis. Electroencephalogram artifacts 
were rejected by visual inspection. The all EEG sequences were 
cut out from the continuous EEG recordings and divided into 
time sequence equal to 23.6 s, that according to the duration 
of seizure. Sampling time was equal to 0.0057 s. The length of 
each recording is 4097 samples [24]. The signals are analyzed 
using Short-Time Fourier Transform. The STFT is obtained 
by applying the Fourier Transform by a fixed-sized, rectangular 
moving window to input series. Short-Time Fourier Transform 
of a signal X(t) in the position (t, x) in the time-frequency 
surface t/f can be defined as [5]:

 
 (1)

where: Ts – sampling time ti = iTs, tn – time shift tn = nTs,  
xk – frequency shift xk = k/NTs.

In this paper, rectangular time window with width w = 210Ts 
has been considered. All extracted EEG signal segments are 
additionally normalized between 0 and 1:

 

 (2)

After calculation of STFT of EEG samples, square of the 
absolute value of  has been calculated.

A shift of EEG signal energy from lower to higher frequency 
bands before and during a seizure is common phenomenon, 
which is widely described in literature. Some changes in the 
EEG signal, which are not so obvious in the original full-spec-
trum signal, can be amplified when sub-band is considered 
independently [4]. The biggest changes in values of for three 
analyzed stages: normal, ictal and interictal have been observed 
for 5.6–8.3 Hz domain. In Figures 1–3 exemplary values of 

 in three cases: normal, ictal and interictal have been presented. 
The healthy segment are treated as a reference. The highest 
values of  are often observed in ictal and the lowest in inter-
ictal. These changes are repeated in time-frequency EEG sig-
nal representations.

Based on these observations, the following features from the 
considered time-frequency space have been extracted:
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1) Maximal value of integral of average the magnitude in seg-
ment from 5.6 Hz to 8.3 Hz in the frequency domain over the 
time shift segment from 0 s to 230 s of the STFT spectrum:

 
 (3)

2) Minimal value of integral of average the magnitude in seg-
ment from 5.6 Hz to 8.3 Hz in the frequency domain over the 
time shift segment from 0 s to 230 s of the STFT spectrum:

 
 (4)

3) Variance of integral of average the magnitude in segment 
from 5.6 Hz to 8.3 Hz in the frequency domain over the time 
shift segment from 0 s to 230 s of the STFT spectrum:

 (5)

4) Median of integral of average the magnitude in segment from 
5.6 Hz to 8.3 Hz in the frequency domain over the time shift 
segment from 0 s to 230 s of the STFT spectrum:

  
(6)
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Classifiers is an algorithm which allocates observations to defi-
ned classes based on features of these observations. Two basic 
steps: training and testing in building classifier have been 
highlighted. Training is the process of taking content that is 
known to fit to describe classes and creating a classifier on the 
basis of that known content. In testing process given model to 
determined new data has been used. As described in section 
2, EEG signals are divided into 300 sequences. Each sequence 
properly labels from the set {normal (0), ictal (1) and interic-
tal (2)} has been assigned. In total, four training and testing 
subsets presented in Table 1 are analyzed. Testing subsets: S1B 
and S2B contain of all EEG sequences. Separable testing and 
training in sets 3 and 4 are considered.

Distribution of features fI fII from subset S1A are shown in Fig-
ure 4. Ictal sequences are marked green, interictal class signals 
are marked blue and normal in red. Bellowing figure presents 
that in a two-dimensional representation some of the points 
belonging to the normal and ictal classes are located very close 
to each other. A lot of points from interictal class are even in 

Fig. 4. Distribution of features fIfII for subset S1A
Rys. 4. Rozkład cech fIfII dla podzbioru S1A

the normal class. The points belong to epileptic class are better 
separated. A number of points are far from this discrimination 
function. The distance of these points is indicative of the sever-
ity of the brain state.
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Linear Discriminant Analysis belongs to feature reduction tech-
niques. LDA is used to find a linear combination of features 
that can better separate two or more classes. Let us assume 
that we have 3 classes, each containing N observations xi. 
The measure of within-class scatter Sc for the class c can be 
denoted as:

 
 (7)

where  indicates mean of the all observation xi for c-th class.
Generalization of the within-class scatter SW for all 3 classes 

can be estimated as:
 

i

i
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where ni is the number of xi observations in each class and N 
is a total number of all observations.

The between-class scatter matrix for class c can be calcu-
lated as:

  
(9)

where µi indicates the mean of the all observations xi for i-th 
class and µ indicates the mean of the all observations xi for 
all classes.

Generalization of between-class scatter Sm for all three classes 
can be written as:

Table 1. EEG data used for classification
Tabela 1. Dane EEG zastosowane podczas klasyfikacji

Class
Set 1 Set 2 Set 3 Set 4

S1A S1B S2A S2B S3A S3B S4A S4B

Normal (0) 50 100 25 100 50 50 25 75

Ictal (1) 50 100 25 100 50 50 25 75

Interictal (2) 50 100 25 100 50 50 25 75

Total 150 300 75 300 150 150 75 225
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where ni means the number of xi observations in each class and 
N is a total number of all observations.

The total scatter matrix ST can be denoted as:

  (11)

Orientation W separates the projected feature vectors of 
a class with other classes. The value of W can be calculated by 
maximizing the Fisher’s criterion function J(W). The Fisher’s 
criterion depends on three factors W, SW and SB:

 ( ) WSWWSWW WmJ TT=  (12)

where | ⋅ | is a determinant.
The orientation matrix W is the solution of below problem:

 iiimW ww λ=− SS 1  (13)

where wi (for i = 1, …, h) are the column vectors of W that 
correspond to the largest eigenvalues (li) [25–27].

Six pairs of features generated as described in Section 2 are 
used for classification. Classification process takes place in two 
stages. First, subsets S1A, S2A, S3A and S4A considered in 
Table 1 are used as training data for LDA classifier. Obtained 
training results are shown without brackets in the Table 2. Next, 
subsets S1B, S2B, S3B and S4B are used for testing classifier. 
Classification accuracy is presented in brackets in Table 2. Clas-
sification performance for each considered subset is summarized 
in the following columns of the Table 2. For two separable pairs 
of training and testing subsets (S3A and S3B, S4A and S4B) 
better classification results have been achieved than pairs of 
subsets S1A and S1B, S2A and S2B. Testing subsets S1B and 
S2B contain of all EEG sequences. Classification performance 
is decreased with decreasing training subset size. The rows of 
the Table 2 contain results obtained for used pairs of features. 
For most pairs of features comparable and satisfactory results 
have been obtained. Two pairs of features fIfIII and fIfIV worsen 
accuracy significantly. Figure 5 shows distribution of features 
fIfII for subset S1A. Additionally, results in form of confusion 
matrix are presented for separable subsets S3A (without brack-
ets) and S3B (in brackets) in Table 3. Overlapping ictal and 
normal is clearly visible in Figure 4. Consequently, more errors 
are committed during classification ictal and normal sequences 
than interical and ictal signals.
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Naive Bayes Classifier is a simple and effective technique for 
classifier algorithm. The Bayes theorem allows one to calculate 
the a posteriori probability (the probability of a hypothesis 
considering a variable’s value) based on the a priori probabi-
lity (the frequency of each hypothesis) of both the data found 
and the total data according to:

  (14)

where: j – the hypothesis j = 1, 2, 3 – in the set of hypotheses V, 
and A – the set of features 〈x1, x2, …, xn〉 describing the data. 

In the case, when A has more than one attribute, it is nec-
essary to estimate P = (x1, x2, …, xn| j) in order to calculated  
P = ( j|x1, x2, …, xn). The estimate P(A| j) is computationally 
costly, when the amount of samples is extremely large. It is pos-
sible to obtain a good classification performance event if attri-
butes are not totally independent.

 
  (15)
 
and the classifier output is given by:

  (16)

where: MAP – the maximum a posteriori probability calculated 
within the space of hypotheses V [28, 29].

Fig. 5. Distribution of features fIfII using LDA and subset S3A
Rys. 5. Rozkład cech fIfII przy zastosowaniu LDA oraz podzbioru S3A

Table 2. Correct classifications (%) obtained for LDA and different 
pairs of features 
Tabela 2. Prawidłowe klasyfikacje (%) otrzymane dla LDA oraz różnych par 
cech

No. Features

Correct classifications (%)

S1A
(S1B)

S2A
(S2B)

S3A
(S3B)

S4A
(S4B)

Mean

1 fI fII
87

(83)
79

(78)
86

(84)
76

(73)
82

(79.5)

2 fI fIII
79

(78)
68

(63)
77

(74)
67

(65)
73

(70)

3 fI fIV
78

(76)
67

(64)
76

(73)
66

(64)
72

(69)

4 fII fIII
85

(83)
75

(71)
82

(80)
74

(70)
79

(76)

5 fIIfIV
83

(80)
73

(72)
81

(80)
72

(71)
77

(76)

6 fIII fIV
84

(81)
74

(72)
82

(80)
73

(71)
78

(76)

Mean
83

(80)
73

(70)
81

(78.5)
71

(69)
–

Table 3. Confusion Matrix obtained using features fIfII and subsets 
S3A and S3B (in brackets)
Tabela 3. Macierz błędu otrzymana z użyciem cech fIfII dla podzbioru S3A 
oraz S3B (w nawiasach)

Class Ictal Normal Interictal

Ictal 39 (35) 7 (8) 4 (7)

Normal 3 (4) 45 (45) 2 (1)

Interictal 4 (3) 1 (1) 45 (46)
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Table 4 presents classification accuracy using Naive Bayes 
Classifier calculated in an analogous manner as before. The use 
of NBC provides better classification accuracy in all analysed 
cases than LDA classifier. It can be clearly seen for features fI  fIII 
and fI fIV. Distribution of features fIfII for subset S3A is depicted 
in Figure 6. Table 5 shows confusion matrix achieved using 
features fI fII for subsets S3A and S3B. NBC classifier improves 
classification of ictal sequences and slightly deteriorates detec-
tion interictal sequences compared with LDA.

Fig. 6. Distribution of features fIfII using NBC and subset S3A
Rys. 6. Rozkład cech fIfII przy zastosowaniu NBC oraz podzbioru S3A

 

Table 4. Correct classifications (%) obtained for NBC and different 
pairs of features
Tabela 4. Prawidłowe klasyfikacje (%) otrzymane dla NBC oraz różnych par 
cech

No. Fea-
tures

Correct classifications (%)

S1A
(S1B)

S2A
(S2B)

S3A
(S3B)

S4A
(S4B) Mean

1 fI fII
90

(87)
82

(79)
88

(85)
80

(77)
84

(81)

2 fI fIII
82

(79)
72

(70)
82

(80)
71

(71)
77

(75)

3 fI fIV
83

(79)
71

(69)
83

(81)
70

(67)
77

(74)

4 fII fIII
87

(85)
79

(77)
86

(83)
75

(74)
80.5
(78)

5 fII fIV
88

(84)
81

(78)
85

(82)
76

(74)
81

(78.5)

6 fIII fIV
88

(86)
82

(79)
86

(84)
78

(76)
82

(80)

Mean 86
(83)

74.5
(72)

85
(83)

75
(73) –
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The extension of Naive Bayes is called Gaussian Naive Bayes 
Classifier (GNBC). The likelihood of the features is assumed 
to be Gaussian [30].

Table 5. Confusion matrix obtained using features fIfII and 
subsets S3A and S3B (in brackets)
Tabela 5. Macierz błędu otrzymana z użyciem cech fIfII dla podzbioru 
S3A oraz S3B (w nawiasach)

Class Ictal Normal Interictal

Ictal 45 (43) 3 (4) 2 (3)

Normal 1 (4) 45 (43) 4 (3)

Interictal 6 (7) 2 (2) 42 (41)

Fig. 7. Distribution of features fIfII using GNBC and subset S3A
Rys. 7. Rozkład cech fIfII przy zastosowaniu GNBC oraz podzbioru S3A

Table 6. Correct classifications (%) obtained for GNBC and different 
pairs of features
Tabela 6. Prawidłowe klasyfikacje (%) otrzymane dla GNBC oraz różnych 
par cech

No. Features
Correct classifications (%)

S1A
(S1B)

S2A
(S2B)

S3A
(S3B)

S4A
(S4B)

Mean

1 fI fII
86

(83)
81

(78)
84

(81)
80

(79)
83

(80)

2 fI fIII
81

(78)
76

(75)
80

(76)
75

(74)
78

(76)

3 fI fIV
82

(80)
74

(73)
80

(77)
73

(74)
77

(76)

4 fII fIII
84

(82)
81

(80)
82

(79)
79

(76)
81.5
(79)

5 fII fIV
84

(81)
80

(78)
83

(79)
79

(73)
81.5
(78)

6 fIII fIV
85

(83)
79

(76)
84

(80)
78

(78)
81.5
(79)

Mean
84

(81)
78.5
(77)

82
(79)

77
(76)

–

 

 (17)

Table 6 shows classification results using Gaussian Naive Bayes 
Classifier. More classification errors are committed than for NBC. 
Comparable accuracy is achieved in the most cases as for LDA 
classifier. GNBC improves significantly average classification per-
formance calculated for subset 4 and pairs of features fIfIII and fIfIV 
by comparing with LDA. The distribution of features fIfII for sub-
set S1A is presented in Figure 7. Table 7 contains results in form 
confusion matrix for subsets S3A (in brackets) and S3B (without 
brackets). Based on the Table 7, it can be concluded that detec-
tion ictal sequences is better than for LDA. GNBC gives the 
worst classification results for sequences belong to interictal class.

Table 7. Confusion matrix obtained using features fI and fII and 
subsets S3A and S3B (in brackets)
Tabela 7. Macierz błędu otrzymana z użyciem cech fIfII dla podzbioru S3A 
oraz S3B (w nawiasach)

Class Ictal Normal Interictal

Ictal 43 (42) 4 (5) 3 (3)

Normal 2 (3) 46 (44) 2 (4)

Interictal 8 (10) 5 (3) 37 (37)

43
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The proposed methods are promising for three-class EEG 
signal classification. The main observations of this study are 
presented in following points:
1. The STFT features extraction procedure may appear as 

effective for the classification performance even the training 
data size is much smaller than size of testing data.

2. The best classification results are obtained using Naive 
Bayes Classifier for each analyzed set and each combination 
of used features, i.e. for features fIfII and subset S3B classi-
fication accuracy is equal to 85%, 84% and 81% for NBC, 
LDA and GNBC, respectively. This dependency can be 
observed also for mean values of classification accuracy for 
all combinations of features in each considered subset (i.e. 
for S3B: 83%, 78.5% and 79% for NBC, LDA and GNBC, 
respectively) and for each pair of features in all subsets (i.e. 
for testing subsets and features fIfII: 81%, 79.5% and 80% 
for NBC, LDA and GNBC, respectively).

3. Gaussian Naive Bayes Classifier turned out to be the most 
stabile classifier. For this classifier the highest classification 
accuracy equal to: 83%, 78%, 81% and 79% and the lowest 
– 78%, 73%, 76% and 73% have been achieved for subsets: 
S1B, S2B, S3B and S4B, respectively. The calculated diffe-
rences between the best and the worst classification results 
for each considered set are equal to: 5%, 5%, 5% and 7%. 
In turn using LDA the best classification results are equal 
to: 83%, 78%, 84% and 73%, and the worst – 76%, 63%, 
73% and 64% for subsets: S1B, S2B, S3B and S4B, respec-
tively. The achieved differences are: 7%, 15%, 11% and 9% 
for each, consecutive subset. For NCB the calculated diffe-
rences are equal to: 8%, 10%, 5% and 10%. Similar results 
calculated for average classification accuracy obtained for 
all combinations of features in each considered subset have 
been achieved: 4% (the highest accuracy – 80% and the 
lowest – 76%), 9.5% (the highest accuracy – 79.5% and the 
lowest – 69%) and 7% (the highest accuracy – 81% and 
the lowest – 74%) for GNBC, LDA and NBC, respectively. 
The differences calculated for all pairs of features in all sub-
sets are equal to: 5% (the highest accuracy – 81% and the 
lowest – 76%), 10.5% (the highest accuracy – 80% and the 
lowest – 69.5%), and 11% (the highest accuracy – 83% and 
the lowest – 72%) for GNBC, LDA and NBC, respectively. 
These observations are confirmed during training classifiers.

4. Based on results presented in point 3, it can be concluded 
that Linear Discriminant Analysis is the most sensitive to 
the choice of combination of used features and conside-
red subsets.

5. The achieved results indicate the possibility of using Short-
-Time Fourier transform successfully in the process of feature 
extraction and classification for neurological disorders.

6. Creating modern diagnostic tools based on accurate algori-
thms can have a significant impact on the improvement of 
making diagnosis in shorter time. 
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+��	��%�	��	.
Sygnały EEG są z definicji niestacjonarne i stosowane do badania aktywności mózgu 
w patologii. Epilepsja należy do najczęstszych chorób neurologicznych. W pracy użyto rzeczywistych 
sekwencji EEG określonych przez lekarza jako stan normalny oraz padaczka (stany napadowe oraz 
międzynapadowe). W procesie klasyfikacji sygnały zostały podzielone na dwa podzbiory – uczący 
oraz testujący. Klasyfikacja została przeprowadzona za pomocą krótkotrwałej transformaty Fouriera. 
Na podstawie otrzymanego widma dokonano ekstrakcji czterech cech. Badanie przedstawia ekspery-
menty oparte na analizie i klasyfikacji sygnałów EEG za pomocą różnych metod, w tym Liniowej Analizy 
Dyskryminacyjnej, Naiwnego Klasyfikatora Bayesa oraz Naiwnego Klasyfikatora Bayesa dla rozkładu 
Gaussa. Wyniki pokazują, że użyty algorytm może być potencjalnie stosowany w automatycznej diagno-
styce schorzeń neurologicznych i może w przyszłości zwiększyć liczbę poprawnie stawianych diagnoz. 
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