PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characteristics of the spring/summer production in the Mecklenburg Bight (Baltic Sea) as revealed by long-term pCO2data

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Automated CO2 partial pressure, pCO2, measurements were performed on a cargo ship that commutes between the Gulf of Finland and the Mecklenburg Bight in the southwest of the Baltic Sea. The data from 2004 to 2014 along a sub-transect in the Mecklenburg Bight are used to analyze the timing and intensity of the net community production (NCP). The start of the spring bloom, identified by the first continuous drop of the pCO2 below the atmospheric level, spanned from mid-February to mid-March. Converting the pCO2 decrease during spring to changes in the total CO2 concentration and taking into account air-sea gas exchange, the spring NCP was determined. The NCP increased by about 80% during 2004–2014, the mean amounted to 40 μmol L-1. In two years a distinct second pCO2 minimum in mid-summer succeeded the minimum in spring. This was attributed to production fuelled by nitrogen fixation since the nitrate concentrations were virtually zero and since the atmospheric deposition could not satisfy the NCP nitrogen demand. Furthermore, investigations of the plankton composition revealed a cyanobacteria biomass peak in the year with the highest mid-summer NCP. Based on the calculation of the mid-summer NCP in the two particular years and on the C/N ratio of particulate organic matter, the corresponding nitrogen fixation activity was calculated. These values and the analysis of the relationship between the integrated NCP and temperature indicated that the nitrogen fixation activity in the Mecklenburg Bight was by a factor 3–4 lower than in the central Baltic Sea.
Czasopismo
Rocznik
Strony
375--385
Opis fizyczny
Bibliogr. 25 poz., tab., wykr., mapy
Twórcy
autor
  • Leibniz Institute for Baltic Sea Research (IOW), Warnemünde, Germany
autor
  • Leibniz Institute for Baltic Sea Research (IOW), Warnemünde, Germany
autor
  • Finnish Environment Institute (SYKE), Helsinki, Finland
autor
  • Finnish Environment Institute (SYKE), Helsinki, Finland
autor
  • Leibniz Institute for Baltic Sea Research (IOW), Warnemünde, Germany
Bibliografia
  • 1. Bartnicki, J., Semeena, V., Fagerli, H., 2011. Atmospheric deposition of nitrogen to the Baltic Sea in the period 1995—2006. Atmos. Chem. Phys. 11, 10057—10069.
  • 2. Eggert, A., Schneider, B., 2015. A nitrogen source in spring in the surface mixed-layer of the Baltic Sea: evidence from total nitrogen and total phosphorus data. J. Mar. Syst. 148, 39—47.
  • 3. Grasshoff, K., Ehrhardt, M., Kremling, K., 1983. Methods of Seawater Analysis, 2nd ed. Verlag Chemie, Weinheim, Germany.
  • 4. Hansell, D.A., Carlson, C.A., 1998. Net community production of dissolved organic carbon. Global Biogeochem. Cycles 12 (3), 443—453.
  • 5. Keeling, R.F., Piper, S.C., Bollenbacher, A.F., Walker, J.S., 2008. Atmospheric CO2 records from sites in the SIO air sampling network. In: Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN, U.S.A.
  • 6. Koertzinger, A., Thomas, H., Schneider, B., Gronau, N., Mintrop, L., Duinker, J.C., 1996. At-sea intercomparison of two newly designed underway pCO2 systems — encouraging results. Mar. Chem. 52, 133—145.
  • 7. Millero, F.J., Graham, T.B., Huang, F., Bustos-Serrano, H., Pierrot, D., 2006. Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Mar. Chem. 100 (1—2), 80—94.
  • 8. Mohrholz, V., Naumann, M., Nausch, G., Krüger, S., Gräwe, U., 2015. Fresh oxygen for the Baltic Sea — an exceptional saline inflow after a decade of stagnation. J. Mar. Syst. 148, 152—166.
  • 9. Öberg, J., 2013. Cyanobacterial blooms in the Baltic Sea in 2013. HEL-COM Baltic Sea Environment Fact Sheets 2013, http://helcom.fi/ baltic-sea-trends/environment-fact-sheets/eutrophication/ cyanobacterial-blooms-in-the-baltic-sea/.
  • 10. Omstedt, A., Axell, L.B., 2003. Modeling the variations of salinity and temperature in the large Gulfs of the Baltic Sea. Cont. Shelf Res. 23, 265—294.
  • 11. Schneider, B., Gülzow, W., Sadkowiak, B., Rehder, G., 2014a. Detecting sinks and sources of CO2 and CH4 by ferrybox-based measurements in the Baltic Sea: three case studies. J. Mar. Syst. 140, 13—25.
  • 12. Schneider, B., Gustafsson, E., Sadkowiak, B., 2014b. Control of the mid-summer net community production and nitrogen fixation in the central Baltic Sea: an approach based on pCO2 measurements on a cargo ship. J. Mar. Syst. 136, 1—9.
  • 13. Schneider, B., Kaitala, S., Maunula, P., 2006. Identification and quantification of plankton bloom events in the Baltic Sea by continuous pCO2 and chlorophyll a measurements. J. Mar. Syst. 59, 238—248.
  • 14. Schneider, B., Kaitala, S., Raateoja, M., Sadkowiak, B., 2009. A nitrogen fixation estimate for the Baltic Sea based on continuous pCO2 measurements on a cargo ship and total nitrogen data. Cont. Shelf Res. 29, 1535—1540.
  • 15. Schneider, B., Kuss, J., 2004. Past and present productivity of the Baltic Sea as inferred from pCO2 data. Cont. Shelf Res. 24, 1611— 1622.
  • 16. Schneider, B., Nausch, G., Nagel, K., Wasmund, N., 2003. The surface water CO2 budget for the Baltic Proper: a new way to determine nitrogen fixation. J. Mar. Syst. 42, 53—64.
  • 17. Schneider, B., Nausch, G., Pohl, C., 2010. Mineralization of organic matter and nitrogen transformations in the Gotland Sea deep water. Mar. Chem. 119, 153—161.
  • 18. Smetacek, V., Passow, U., 1990. Spring bloom initiation and Sverdrup's critical depth model. Limnol. Oceanogr. 35, 228—234.
  • 19. Stal, L., Albertano, P., Bergman, B., von Bröckel, K., Gallon, J.R., Hayes, P.K., Sivonen, K., Walsby, A.E., 2003. BASIC: Baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea — response to a changing environment. Cont. Shelf Res. 23, 1695—1714.
  • 20. Stigebrandt, A., 1991. Computation of oxygen fluxes through the sea surface and the net production of organic matter with application to the Baltic and adjacent seas. Limnol. Oceanogr. 36, 444—454.
  • 21. Wanninkhof, R., 1992. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. 97, 7373—7382.
  • 22. Wanninkhof, R., Asher, W.E., Ho, D.T., Sweeney, C., McGillis, W.R., 2009. Advances in quantifying air-sea gas exchange and environmental forcing. Annu. Rev. Mar. Sci. 1 (1), 213—244.
  • 23. Wasmund, N., Busch, S., Gromisz, S., Höglander, H., Jaanus, A., Johansen, M., Jurgensone, I., Karlsson, C., Kownacka, J., Kraśniewski, W., Lehtinen, S., Olenina, I., 2014. Cyanobacteria biomass. HELCOM Baltic Sea Environment Fact Sheet 2014, http:// www.helcom.fi/baltic-sea-trends/environment-fact-sheets/ eutrophication/cyanobacteria-biomass/.
  • 24. Wasmund, N., Nausch, G., Matthäus, W., 1998. Phytoplankton spring blooms in the southern Baltic Sea — spatio-temporal development and long-term trends. J. Plankton Res. 20, 1099—1117.
  • 25. Weiss, R.F., 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem. 2, 203—215.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0bbcbb16-f682-47d5-818b-1f7e66aac177
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.