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Optimal replacement period with repair cost limit 
and cumulative damage model 

Optymalny okres wymiany przy limicie kosztów naprawy i modelu 
sumowania uszkodzeń

This paper deals with periodical replacement model with single repair cost limit under cumulative damage process. The system 
is subject to two types of shocks. Type I shock causes damage to the system. The total damage is additive, and it causes a serious 
failure eventually if the total additive damage exceeds a failure level K. Type II shock causes the system to a minor failure, which 
can be maintained by minimal repair if the estimated repair cost is smaller than a predetermined repair-cost limit LS or by preven-
tive replacement if the estimated repair cost is larger than LS. The system is also replaced at scheduled time T or at serious failure. 
The long-term expected cost per unit time is derived using the expected costs as the optimality criterion. The minimum-cost policy 
is derived, and existence and uniqueness are proved.

Keywords: periodical replacement model, cumulative damage model, repair cost limit, minimal repair.

Niniejszy artykuł dotyczy modelu wymiany okresowej z ograniczeniem kosztów pojedynczej naprawy w ramach procesu sumowa-
nia uszkodzeń. Układ podlega dwóm rodzajom zaburzeń. Zaburzenie I typu powoduje uszkodzenie systemu. Uszkodzenie całkowite 
sumuje się, powodując w końcu poważną awarię jeśli łączna wartość uszkodzeń przekroczy poziom awarii K. Zaburzenie II typu 
powoduje drobną awarię systemu, która może zostać usunięta dzięki minimalnej naprawie jeśli przewidywany koszt naprawy 
będzie mniejszy niż zakładany limit kosztów naprawy LS lub na drodze wymiany prewencyjnej, jeżeli przewidywany koszt naprawy 
będzie większy niż LS. Układ również podlega wymianie w założonym czasie T lub w przypadku poważnej awarii. Długotermino-
we przewidywane koszty na jednostkę czasu obliczono z wykorzystaniem przewidywanych kosztów jako kryterium optymalności. 
Wyprowadzono strategię minimalnych kosztów, udowadniając istnienie i jedyność.

Słowa kluczowe: Model wymiany okresowej, model sumowania uszkodzeń, limit kosztów naprawy, naprawa 
minimalna.

1. Introduction

Preventing unexpected failure of  the system during production 
process is very important because the production loss from system 
failure is very expensive, sometimes is very dangerous. In such situa-
tion, it is wise to replace the system before failure. Therefore, preven-
tive maintenance (PM) models with regard to deteriorating systems 
have widely attracted the attention of several researchers and prac-
titioners.

The system suffers external shocks, and then these shocks can in-
cur damage to the system. Lai et al. (2006) divided shock models into 
five categories depending on the effect of shock damage to the sys-
tem: (1) Cumulative damage model; (2) Instantaneous failure model; 
(3) Increasing operating cost model; (4) Increasing failure rate model; 
and (5) δ-shock model. On cumulative damage model, the system is 
subjected to shocks and suffers some amount of damage such as wear, 
fatigue, crack growth, creep, and dielectric at each shock. The total 
damage due to shocks is additive, and the system can fail when the 
total damage exceeds a failure level. The reliabiity properties and pre-
ventive maintennace policies for variuos damage models were sum-
marized sufficiently in Nakagawa (2007).

In cumulative damage model, many researchers have used the 
optimum control-limit policy where a system is replaced when the 
total damage exceeds a threshold level (Nagakawa (1976)). On the 
other hand, the replacement models where a system is replaced at a 
planned time T were proposed in Taylor (1975), Mizuno (1986), and 
Perry (2000). Furthermore, the replacement models where a system is 
replaced at shock N were proposed in Nagakawa (1984). 

Nakagawa and Kijima (1989) applied the periodical replacement 
policy with minimal repair at failure to a cumulative damage model 
and obtained the optimal values T*, N*, and Z*, individually. Kijima 
and Nakagawa (1991) considered a cumulative damage shock model 
with imperfect PM policy. Satow and Nakagawa (1997) presented 
a modified cumulative damage model and considered a system suf-
fers two kinds of damage. They proposed three replacement policies 
as following: the system can be replaced before failure at time T, at 
shock N or at damage level k, where k is less than failure level K. The 
optimal values T*, N*, and k* which minimize the expected cost rates 
of three replacement policies are obtained individually. Satow et al. 
(2000) continued the work of Satow and Nakagawa (1997). The sys-
tem is preventively replaced when the cumulative damage exceeds a 
threshold k. The optimal value k* which minimizes the expected cost 
is obtained.

Qian et al. (1999) presented an extended cumulative damage 
model with two kinds of shocks: one is failure shock and the other is 
damage shock at which it suffers only damage. The system is replaced 
at scheduled time T or at failure. Qian et al. (2003) considered an ex-
tended cumulative damage model with maintenance at each shock and 
minimal repair at each failure. The optimal values T* and N* which 
minimize the expected cost are obtained. Qian et al. (2005) consid-
ered a cumulative damage model, where the system undergoes the PM 
at a certain time T or the total damage exceeds a managerial level k. 
The optimal values T* and k* are obtained simultaneously. 

Ito and Nakagawa (2011) considered three cumulative damage 
models: (1) a unit is subjected to shocks and suffers some damage due 
to shocks. (2) The amount of damage due to shocks is measured only 
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at periodic time. (3) The amount of damage increases linearly with the 
time. The unit fails when the total damage has exceeded a failure level 
K. The optimal T* for Models 1 & 3 and N* for Model 2 are obtained. 
Recently, Nakagawa (2007) summarized a large amount of preventive 
maintenance optimization problems for cumulative damage model.

In PM models with minimal repair, Drinkwater and Hastings 
(1967) introduced firstly the concept of repair cost limit. When a unit 
fails, repair cost is estimated and minimal repair is then executed in 
case the estimated cost is less than a predetermined limit; otherwise, 
the unit is replaced. PM models with repair-cost limit policy have 
been discussed in several articles. Several extensions of these poli-
cies have been proposed in Kapur et al. (1983), Park (1985), Bai and 
Yun (1986), Kapur and Garg (1989), and Yun and Bai (1987, 1988). 
Dohi et al. (2000) applied the TTT method to determine the optimal 
repair-time limit, in which it wants to minimize the long-run expected 
cost per unit time in the steady state case. Continuously, Dohi et al. 
(2003) discussed it to minimize the expected total discounted over an 
infinite time horizon.

 In this paper, we consider a periodical replacement policy 
incorporating with the concept of repair cost limit under a cumulative 
damage model. The outline of this paper is as follows. In Section 2, 
the problem is defined. The long-term expected cost per unit time 

( , )sA T L  and the conditions characterising the optimal period T* are 
derived in Section 3. Finally, a numerical example and conclusions 
are presented in Sections 4 and 5, respectively.

2. Problem Definition

A system subjected to external shocks is considered and these 
shocks are supposed to occur randomly at a non-homogeneous Pois-

son process with an intensity function λ( )t . These shocks can be di-

vided into two types: type I shock and type II shock. A shock when-

ever occurs is type I and type II with probailities  (0 1)p p< ≤  and 

(1 )q p= − , respectively. Thus, we can know that the occurrences of 
type I and type II shocks are according to two non-homogeneous Pois-

son processes 1{ ( ), 0}N t t ≥ and 2{ ( ), 0}N t t ≥  with intensity rates 

p tλ( )  and q tλ( ) , respectively. The effects of two types of shock to 

the system are described as follows:
Type I shocks cause the damage to the system and these dama-

ges are additive. When a type I shock occurs, an amount iX  of dama-

ge due to this shock has a probability distribution ( ) ( )i iH x P X x= ≤  

and a finite mean µx , 1,2,3,...i = . Then the accumulated damage to 

the j-th type I shock after the installation 
1
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j
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where the “*” mark is denoted the Stieltjes convolution, i.e., 
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where m t p x dxt
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( ) ( )= ∫ λ

 
  denote the mean number of type-I shocks 

occurred in 0,t[ ) .

If the accumulated damage exceeds a failure level K, then a 
serious failure occurs and the system must be replaced by a new one. 
The probability that a serious failure occurs at j-th type I shock is 

( 1) ( )( ) ( )j jH K H K− − . Let random variable Z denote the occurrence 
time of the first serious failure, so the survival function of Z is given 
by 

F t P Z t P W K P N t j W K P t H Kz N t j
j
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and the density function of Z is f t p t H t H t P tz
j j
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A type II shock whenever occurs makes the system into minor 
failure, and such a failure can be corrected by minimal repair. Hence, 

the probability that the number of  minor failures occurred in 0,t[ )  

equals to j is given by:

	
( )2 2

2 2
( ) exp( ( ))
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!

j

j
m t m t
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j
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where m t q x dxt
2 0
( ) ( )= ∫ λ

 
  denote the mean number of minor failures 

during
 

0,t[ ) . 

When a minor failure occurs, the repair cost due to this failure is 

evaluated. We assume that the repair cost iY  due to i-th minor failure 
are nonnegative i.i.d. random variables with a probability distribution 

( ) ( )iG y P Y y= ≤ , 1,2,3,...i = .If iY  is smaller than a predetermined 
limit LS, then the system is corrected by minimal repair. Otherwise, 

the system is replaced. Thus, δ = >P Y Li s( )  is the probability of the 

system’s preventive replacement at the minor failure occurement. We 

let µy  
be the mean of random variable iY  truncated at LS. Let random 

variable U denote the time of replacement due to minor failure has the 
following distribution:

F t P U t P N t j P Y L Y L Y Lu s s j s
j

( ) ( ) ( ( ) ) ( , , , ) exp(= > = = × < < < −
=

∞
∑ 2 1 2

0
 = δmm t2( ))  (5)

and the density function of U is f t q t m tu ( ) ( )exp ( )= −( )δ λ δ 2 .

Except the system replacement at a serious failure or at one minor 
failure in case that the corresponding repair cost is larger than LS, the 
system is also preventively replaced at a scheduled time T . In sum-
mary, the system is replaced at scheduled time T , or at a time of one 
minor failure where the repair cost exceeds a pre-determined limit 
LS, or at serious failure. The probabilities for these three cases will be 
computed as follows.

First, if all repair cost for minor failures occurred before T are less 
than LS 

and the accumulted damage due to type I shocks up to time T 

is less than failure level K, i.e., min( , , )Z U T T= , preventive replace-
ment is executed at scheduled time T. Thus, the probability that the 
system will be replaced preventively at scheduled time T is given by: 
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Second, if min( , , )Z U T U= , the system will be replaced preven-
tively at some one minor failure that the corresponding repair cost 
is the first time larger than limit LS. Thus, the probability that the 
system will be replaced preventively at one minor failure is derived 
as follows:
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Finally, if min( , , )Z U T Z= , the system will be replaced at a seri-
ous failure. Thus, the probability of a failure replacement is given by:
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Moreover, the following assumptions are required:
		  (a1)	The system is monitored continuously, and all failures 

are detected immediately. 
		  (a2)	Repairs and replacements are completed	  

 instantaneously.
		  (a3)	The steady state case is considered.

Moreover, the replacement that is executed at scheduled time T or 
at the occurrence of one minor failure where the repair cost exceeds 

limit LS  is called preventive replacement of cost 0C . While replace-
ment executed at serious failure is called failure replacement of cost 

1 1 0( )C C C> . Under a fixed limit LS, this problem is to find an optimal 

T* to minimize the long-term expected cost per unit time ( , )sA T L  in 
the steady state case.

3. Long-term expected cost per unit time 

A replacement cycle is actually a time interval between the in-
stallation of the system and the first replacement or a time interval 
between consecutive replacements. Therefore, the successive repla-

cement cycles will constitute a renewal process. Let ( , )sR T L  and 

( , )SZ T L  denote the mean length of a replacement cycle and the 
expected total cost incurred during a replacement cycle, respective-
ly. By using renewal-reward theorem, we can see that the long-term 
expected cost per unit time in the steady state case is given by (Ross 
(1983)):
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Under the defined preventive maintenance policy, the expected 

length of a replacement cycle ( , )SZ T L  is given by: 
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If the system is replaced at scheduled time T, then the number of 

minor failures during 0,T[ ]  will be 2( )N T . If the system is replaced 

at time U, then the number of minor failures during [0,U] will be

2( )N U . And, if the system is replaced at the first serious failure, then 

the number of minor failures during [0,Z] will be 2( )N Z . Therefore, 

the expected number of minor failures until replacement is: 
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Furthermore, the expected total cost ( , )sR T L  during a replacement cycle can be dervied dervied as follows:
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Combining (10) and (11), the long-term expected cost per unit time ( , )sA T L  is obtained as follows:
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A necessary condition that a finite T* minimizes ( , )sA T L  under a fixed LS can be obtained by differentiating ( , )sA T L  with respect to T and 

setting it equal to zero. If we let  
( , )SdA T L
dT

 equal to zero, we have:
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For simplification, let ( )U T  denote the left-hand side of (14).

Theorem 1: If λ( )t  is an increasing function of t and 0lim ( )
T

U T C
→∞

> , there are at least one finite optimal T*, *0 T≤ < ∞  such that 

*( , ) ( , )S SA T L A T L<  for all T. And, if λ( )t  is strictly increasing and ( ) 0U T′ >  for all T, then ( )U T  is a strictly increasing function of T and the 
optimal T* is also unique. Furthermore, if 0lim ( )
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then ( )U T  is a strictly increasing function of t, and hence, the optimal 
T* is also unique. And, the resulting optimal long-term expected cost 
per unit time will be: 
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A T
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j

( , )

( ) ( ) ( ) exp ( ) ( )( ) ( )

∞ =

+ − −( ) −( )+

=

∞
∑0 1 0

1

0
2 1 pp t dtT λ( )0∫

                                                 +µ λy
j

j
j

TH K P t m t q t dt( ) ( ) ( ) exp ( ) ( )
=

∞
∑ ∫ −( )





















0
1 20 



−
=

∞
∑ ∫H K P t m t dtj

j
j

T( ) ( ) ( ) exp( ( ))
0

10 2

This is reduced to a periodical replacement policy with minimal repair 
at minor failure and with replacement at serious failure.

Case 2. If  and 1SL p→∞ = , then δ =1.  A T LS( , ) will be reduced to

A T C C C H K H K t P t dtj j

j
j

T( , ) ( ) ( ) ( ) ( ) ( )( ) ( )∞ = + − −( )



+

=

∞
∑ ∫0 1 0

1

0
10

λ






 =

∞
∑ ∫H K P t dtj

j
j

T( ) ( ) ( )
0
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which is the same as in Zuckerman (1980) and model 1 in Ito and 
Nakagawa (2011).

4. Numerical Example 

In this numerical example, we consider that external shocks occur 
randomly at a non-homogeneous Poisson process with an intensity 

function λ λ β( ) ,t t= −1 λ β> >0 0, . We assume that the shape pa-

rameter is set at β = 2 , and that λ λ( )t t=  is an increasing function 

of t. Suppose that the amount of damage iX  
due to the i-th type I 

shock has an exponential distribution with finite mean µx =12 , 

1,2,3,...i = . And, the failure level K of this system is set to be 100. So, 

the convolution ( ) (100)jH is computed as follows:

	
H

j
x e dx y e

j
dyj

x x

j x j y
x( ) ( )

( ) ( )!
100 1

1

1

0
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
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−

− − − −

∫ Γ µ µ
µ

 

00
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Preventive and failure replacements occur at cost of 0 1000C =  

and 1 1500C = , respectively, while the cost of consecutive minimal 

repairs are i.i.d. normal distribution with finite mean µy = 50  and 

standard deviation σ y =10 . If th predetermined limit LS is set to be 

62.82, so 

	 δ
µ

σ
= > =

−
>

−
=P Y P

Y
i
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y
( . ) ( . ) .62 82 62 82 50

10
0 1 .

Since λ λ( )t t=  is increasing in t, so λ( )∞ →∞ , furthermore,

H p
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tends to a fixed number and ( ) 1D ∞ → , then ( )U ∞ →∞ , as t →∞  . 

That means that 0lim ( )
T

U T C
→∞

> . According to the conditions of 

Theorem 1, we can see that the optimal T* will be finite and unique. 

We use Mathematical software “MAPLE” to compute ( , )SA T L  under different combinations of parameters λ, p and δ. In order to 

understand the effects on T* and *( , )SA T L  from different parameters, 
we consider two cases: 
	 Case 1:  p=0.9, 0.8, 0.7, 0.6, 0.5 and λ=1.0, 1.5, 2.0, 2.5, 3.0, δ=0.1. 
	 Case 2: δ=0.1, 0.15, 0.2, 0.25, 0.3, p=0.7, λ=2. 

The results of cases 1 and 2 are showed in Tables 1 and 2, re-
spectively. From tables, 1 and 2, we have the following conclusions: 

When (1)	 λ is greater, it is shown that the optimal preventive pe-
riod T* decreases but the minimum long-term expected cost 

per unit time *( , )SA T L  
increases. The greater λ implies that 

the failures of the system occurred easily, so the optimal T* 
must be shorter to prevent the occurrence of random failures.

When (2)	 p is smaller (and (1 )p− is greater), we can see that the 

optimal preventive period T* increases but the minimum 
*( , )SA T L  is firstly decreasing and then increasing. The small-

er p implies that the probability of replacing the system at seri-
ous failure is smaller, so the optimal T* can be longer.
When (3)	 δ is greater, it will be shown that the optimal preventive 
period T* and the minimum long-term expected cost per unit 

time *( , )SA T L  
increase simultaneously. The greater δ implies 

that the possibility of replacing of the system from serious fail-
ure is reduced slightly, so the optimal T* can be extended 
slightly.
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5. Conclusions

In this paper, a periodical replacement policy with repair-cost lim-
it under cumulative damage model is introduced, in which we derived 

the long-term expected cost per unit time ( , )SA T L  by incorporating 
costs due to replacement and minimal repair. This research verifies 

that under some specific conditions, the optimal period T* to minimize 

( , )SA T L  will be finite and unique. This work can be extended to con-
sider multi-unit system or include the concept of imperfect repair. 

Table 1.	 Optimal T* and *( , )SA T L  at different values of λ and p .

p=0.9 p=0.8 p=0.7 p=0.6 p=0.5

λ T* *( , )SA T L T* *( , )SA T L T* *( , )SA T L T* *( , )SA T L T* *( , )SA T L

1.0 4.14 324.4449148 4.36 322.9600534 4.62 322.1957584 4.93 322.4162087 5.31 324.0059950

1.5 3.38 397.3623157 3.56 395.5436502 3.78 394.6077033 4.03 394.8774576 4.34 396.8248869

2.0 2.95 458.8561575 3.09 456.7344917 3.27 455.6532650 3.49 455.9652071 3.75 458.2141217

2.5 2.62 512.9920485 2.76 510.6440824 2.92 509.4369527 3.12 509.7845672 3.36 512.2985146

3.0 2.39 561.9551858 2.52 559.3825379 2.67 558.0590004 2.85 558.4410978 3.07 561.1954111

Table 2.	 Optimal T* and *( , )SA T L  at different values of δ.

δ=0.1 δ=0.15 δ=0.20 δ=0.25 δ=0.30

λ T* *( , )SA T L T* *( , )SA T L T* *( , )SA T L T* *( , )SA T L T* *( , )SA T L

2.0 3.27 455.6532650 3.3 467.2935446 3.32 479.1248321 3.35 491.1283410 3.38 503.2854405
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