PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Completion in a common supercategory of Met, UAP, wsAP and Near

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates the notion of approach nearness spaces. Using clusters, completion of an approach nearness space is constructed, which is a unified study of completion in the context of metric spaces, uniform approach spaces, weakly symmetric approach spaces and nearness spaces. Another generalization of completeness, called ultrafilter completeness is introduced to prove the Niemytzki–Tychonoff theorem for approach nearness spaces. Both definitions of completions are shown to be equivalent in a limit-regular approach space. Various examples are given to support the present study.
Wydawca
Rocznik
Strony
209--227
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
  • Department of Mathematics, University of Allahabad, Allahabad 21,1002, India
autor
  • Department of Mathematics University of Allahabad Allahabad 211002, India
Bibliografia
  • [1] G. S. J. Adámek, H. Herrlich, G. E. Strecker, Abstract and Concrete Categories. The Joy of Cats, Wiley-Interscience, John Wiley & Sons Inc., NY, 1990, ix + 482 pp.
  • [2] J. W. Carlson, B-completeness in nearness spaces, Gen. Top. Appl. 5(3) (1975), 263–268.
  • [3] G. Gierz, et al., A Compendium of Continuous Lattices, Springer, Berlin, 1980.
  • [4] A. E. Hassanien, A. Abraham, J. F. Peters, G. Schaefer, C. Henry, Rough sets and near sets in medical imaging: a review, IEEE Trans. Inform. Technol. Biomed. 13(6) (2009), 955–968.
  • [5] F. Hausdorff, Set Theory, AMS Chelsea Publishing, Providence, RI, 1914, 352 pp.
  • [6] H. Herrlich, A concept of nearness, Gen. Top. Appl. 4 (1974), 191–212.
  • [7] V. M. Ivanova, A. A. Ivanov, Contiguity spaces and bicompact extensions of topological spaces, Izv. Akad. Nauk. SSSR Ser. Mat. 23 (1959), 613–634.
  • [8] M. Katětov, On continuity structures and spaces of mappings, Comment. Math. Univ. Carolinae 6(2) (1965), 257–278.
  • [9] M. Khare, R. Singh, Complete ξ-grills and (L, n)-merotopies, Fuzzy Sets and Systems 159(5) (2008), 620–628.
  • [10] M. Khare, R. Singh, L-contiguities and their order structure, Fuzzy Sets and Systems 158(4) (2007), 399–408.
  • [11] M. Khare, R. Singh, L-guilds and binary L-merotopies, Novi Sad J. Math. 36(2) (2006), 57–64.
  • [12] M. Khare, S. Tiwari, L-approach merotopies and their categorical perspective, Demonstratio Math. 2012, to appear.
  • [13] M. Khare, S. Tiwari, Approach merotopological spaces and their completion, Internat. J. Math. Math. Sci. (2010), vol. 2010, Article ID 409804, 16 pages, 2010, doi: 10.1155/2010/409804.
  • [14] M. Khare, S. Tiwari, Grill determined L-approach merotopological spaces, Fund. Inform. 99(1) (2010), 1–12, doi: 10.3233/FI-2010-234.
  • [15] C. Kuratowski, Sur l’opération A opération de l’analysis situs, Fund. Math. 3 (1922), 182–199.
  • [16] K. Kuratowski, Introduction to Calculus, Pergamon Press, Oxford, UK, 1961, 316 pp.
  • [17] L. Latecki, F. Prokop, Semi-proximity continuous functions in digital images, Pattern Recognition Letters 16 (1995), 1175–1187.
  • [18] R. Lowen, Y. J. Lee, Approach theory in merotopic, Cauchy and convergence spaces I, Acta Math. Hungar. 83(3) (1999), 189–207.
  • [19] R. Lowen, D. Vaughan, M. Sioen, Completing quasi metric spaces: an alternative approach, Houston J. Math. 29(1) (2003), 113–136.
  • [20] S. A. Naimpally, B. D. Warrack, Proximity Spaces, Cambridge Tract, No. 59, Cambridge, 1970.
  • [21] Z. Pawlak, Classification of objects by means of attributes, Polish Academy of Sciences 429.
  • [22] Z. Pawlak, J. F. Peters, Jak blisko (how near), Systemy Wspomagania Decyzji I, (2002, 2007), 57, 109, ISBN: 83-920730-4-5.
  • [23] Z. Pawlak, A. Skowron, Rudiments of rough sets, Inform. Sci. 177 (2007), 3–27.
  • [24] J. F. Peters, Near sets. Special theory about nearness of objects, Fund. Inform. 75(1–4) (2007), 407–433.
  • [25] J. F. Peters, S. Ramanna, Feature selection: near set approach, Lecture Notes in Computer Science, 4944, Springer-Berlin/Heidelberg, (2008), 57–71.
  • [26] J. F. Peters, P. Wasilewski, Foundations of near sets, Inform. Sciences 179 (2009), 3091–3109.
  • [27] S. Tiwari, Some Aspects of general topology and applications. approach merotopic structures and applications, Ph.D. thesis, supervisor: M. Khare, Department of Mathematics, University of Allahabad, Allahabad, U.P., India, Jan. 2010, viii+112 pp.
  • [28] S. Willard, General Topology, Addison-Wesley Publ. Co., Reading, 1970.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0bb978ea-3473-4d25-a3a0-29d42a740a49
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.