PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fabric Treated with Dye Modified TiO2/Graphene Composite and its Photocatalytic and Self-Cleaning Properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a dye modified titanium dioxide/graphene composite (DTG20) was prepared using direct grey D, a dye with good water solubility, as a modifier. Then the DTG20 and its intermediates, including TiO2 and titanium dioxide/graphene (TG), were finished on cotton fabric through the padding, coating and compounding methods, respectively. Photocatalytic properties of the treated fabrics were investigated using the MB simulated pollutant. It was found that the photodegradation efficiency of MB shown by DTG20 finished fabric treated with the compounding method can reach 90.55 %, and after four recycling experiments, the removal rate of MB can still reach 77.07 %. After being exposed to sunlight for 6 hours, the photodegradation efficiency of MB stained on the surface of DTG20 treated fabric can achieve 91.44 %; therefore, it also exhibited an excellent self-cleaning effect.
Rocznik
Strony
53--59
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
  • School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
autor
  • School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
  • Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing 100029, China
autor
  • School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
autor
  • School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
autor
  • School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
autor
  • School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
Bibliografia
  • 1. Xiaofei Yang, Jieling Qin, Yang Li, et al. Graphene-Spindle Shaped Tio2 Mesocrystal Composites: Facile Synthesis and Enhanced Visible Light Photocatalytic Performance. Journal of Hazardous Materials 2013; 261: 342-350.
  • 2. Jing Li, Shilin Zhou, GuiBing Hong, et al. Hydrothermal Preparation of P25–Graphene Composite with Enhanced Adsorption and Photocatalytic Degradation of Dyes. Chemical Engineering Journal 2013; 219: 486-491.
  • 3. Wang F, Zhang K. Reduced Graphene Oxide–Tio2 Nanocomposite with High Photocatalystic Activity for the Degradation Of Rhodamine B. Journal of Molecular Catalysis A: Chemical 2011; 345: 101-107.
  • 4. Mrinmay D, Joydeep D, Sayantan S, et al. Equivalent Circuit Analysis of Al/Rgo-Tio2 Metal-Semiconductor Interface via Impedance Spectroscopy: Graphene Induced Improvement in Carrier Mobility and Lifetime. Materials Science in Semiconductor Processing 2018; 82: 104-111.
  • 5. Pei Fuyun, Xu Shengang, Liu Yingliang, et al. Photocatalytic Hydrogen Evolution from Water by Dye-Sensitized Titania/Graphene Nanocomposite. CIESC Journal 2013; 64: 3062-3069.
  • 6. Haihua Yang, Stephen VK, Yu Wang, et al. Shuttling Photoelectrochemical Electron Transport in Tricomponent Cds/Rgo/Tio2 Nanocomposites. The Journal of Physical Chemistry C 2013; 117: 20406-20414.
  • 7. Alenizi MA, Alseroury FA, Kumar R, et al. Removal of Trichlorophenol from Wastewater Using Nis/RGO/Tio2 Composite as an Efficient Photocatalyst under Sunlight. Composites 2020; 24: 26.
  • 8. Kalyani R, Gurunathan K. Pth-Rgo-Tio2 Nanocomposite for Photocatalytic Hydrogen Production and Dye Degradation. Journal of Photochemistry and Photobiology A: Chemistry 2016; 329: 105-112.
  • 9. Huogen Yu, Pian Xiao, Jing Tian, et al. Phenylamine-Functionalized Rgo/Tio2 Photocatalysts: Spatially Separated Adsorption Sites and Tunable Photocatalytic Selectivity. ACS Applied Materials & Interfaces 2016; 8: 29470-29477.
  • 10. Ren Jian, Li Guangzhao, Han Rui, et al. In-Situ Preparation of Reduced Graphene Oxide/Titanium Dioxide Composites by Sol-Gel Method and their Photocatalytic Properties. Journal of Functional Materials 2019; 50:7185-7190+7198.
  • 11. Yibing Li, Haimin Zhang, Porun Liu, et al. Cross‐linked g‐C3N4/rGO Nanocomposites with Tunable Band Structure and Enhanced Visible Light Photocatalytic Activity. Small 2013; 9: 3336-3344.
  • 12. Hummers Jr W S, Offeman R E. Preparation of Graphitic Oxide. Journal of the American Chemical Society 1958; 80: 1339-1339.
  • 13. Lv Sailong, Huo Ruiting, Jia Guoqiang. Preparation and Properties of Photo- Catalytic Self-Cleaning Coated Fabrics. Journal of Textile Research 2018; 39: 87-91.
  • 14. Tian Shengnan, Zhao Jian, Chen Lingling, et al. Preparation And Properties Of Self-Cleaning Fabrics Based on Ag /TiO2 Photocatalysis. Journal of Textile Research 2018; 39: 89-94.
  • 15. Jian Yu, Zengyuan Pang, Chenghui Zheng, et al. Cotton Fabric Finished bBy PANI/TiO2 with Multifunctions of Conductivity, Anti-Ultraviolet and Photocatalysis Activity. Applied Surface Science 2019; 470: 84-90.
  • 16. Ji Yiming, Chen Guoqiang, Xing Tieling, et al. Development of Functional Graphene-Finished Textiles. China Dyeing & Finishing 2017; 43: 49-54.
  • 17. Nadeeka DT, Ruchira NW, J Rangana P, et al. Hydrophobic Cotton Textile Surfaces Using an Amphiphilic Graphene Oxide (GO) Coating. Applied Surface Science 2015; 324: 455-463.
  • 18. Ma Zhipeng. Preparation of N-halamine Treated Cotton Fabrics with Antibacterial and UV Resistance Properties. JIANGNAN University 2020.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0bb5abe8-7786-461d-a58b-5d0d5bab8f69
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.