PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performances of Polyethylene Terephthalate Plastic Bottles Waste as Supporting Media in Domestic Wastewater Treatment Using Aerobic Fixed-Film System

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There has been a lot of research on domestic wastewater treatment utilizing polymer-based supporting media. The purpose of this study is to investigate the removal of organic compounds and nutrients, as well as the kinetics of substrate removal, in a batch aerobic fixed-film system that is fed by artificial domestic wastewater and uses Polyethylene Terephthalate (PET) plastic bottles waste as supporting media. The artificial domestics wastewater feeding contains C6H12O6, NH4Cl, and KH2PO4 as carbon, nitrogen, and phosphorus sources. Artificial domestics wastewater treatment was performed at COD levels of 200, 300, 400, 500, and 600 (mg/L). The findings demonstrated that an aerobic fixed-film system wastewater treatment with PET-supporting media could remove organics and nutrients. The removal for COD 85.76 ± 0.59%, ammonia 76.59 ± 0.83%, nitrite 76.09 ± 0.66%, nitrate 64.30 ± 0.42%, TN 77.02 ± 0.94%, and TP 86.54 ± 0.68%, with the Singh’s method substrate removal kinetics (k1) is 1.60 ± 0.05/hour. The benefit of supporting media from PET plastic bottle waste is contributing to plastic bottle waste reduction in Indonesia.
Rocznik
Strony
30--39
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
autor
  • Doctoral Student of Environmental Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia
  • Department of Environmental Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia
autor
  • Department of Environmental Engineering, Universitas Andalas, Padang, 25175, Indonesia
  • Department of Environmental Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia
  • Department of Environmental Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia
  • Department of Environmental Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia
  • Department of Environmental Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia
Bibliografia
  • 1. Ahn, K.H., Hwang, J. H., Song, K. G., Jung, H.Y., Cho, E. S., Lim, B. R., Dezotti, Kim, K. S. 2004. Nitrogen removal using recycled polystyrene bottles as biofilm media. Metals and Materials International, 10, 167-170.
  • 2. Almomani, F.A., Ormeci, B., Kiely, P. 2019. Improving the performance of attached-growth wastewater treatment processes by altering the support media surface. Journal of Environmental Engineering, 145(8).
  • 3. APHA. 2017. Standard Methods for the Examination of Water and Wastewater, 23rd Edition Item Details (23rd ed.), American Public Health Association.
  • 4. Ardestani, F. 2011. Investigation of the Nutrient Uptake and Cell Growth Kinetics with Monod and Moser Models for Penicillium brevicompactum ATCC 16024 in Batch Bioreactor. Iranica Journal of Energy & Environment, 2(2), 117-121.
  • 5. Barwal, A., Chaudhary, R. 2016. Feasibility study for the treatment of municipal wastewater by using a hybrid bio-solar process. Journal of Environmental Management, 177, 271–277.
  • 6. Bassin, J.P., Dias, I.N., Cao, S.M.S., Senra, E., Laranjeira, Y., Dezotti, M. 2016. Effect of increasing organic loading rates on the performance of moving-bed biofilm reactors filled with different support media: Assessing the activity of suspended and attached biomass fractions. Process Safety and Environmental Protection, 100, 131–141.
  • 7. Biyashyna, M., Zhukova, V., Sabily, L. 2010. Processes of biological wastewater treatment for nitrogen, phosphorus removal by immobilized microorganisms. Eastern-European Journal of Enterprise Technologies, 2(10).
  • 8. Callow, M.E., Fletcher, R.L. 1994. The influence of low surface energy materials on bioadhesion- a review. International Biodeterioration & Biodegradation, 34(3-4), 333-348.
  • 9. Carrasco, R.M., Correa, E.M.C., Franco, M.F.A. 2016. Preparation of high-quality activated carbon from polyethylene terephthalate (PET) bottle waste. Its use in the removal of pollutants in aqueous solution. Journal of Environmental Management, 181, 522-535.
  • 10. Dewilda, Y., Fauzi, M., Aziz, R., Utami, F.D. 2023. Analysis of Food Industry Waste Management based on the Food Recovery Hierarchy and 3R Concept – A Case Study in Padang City, West Sumatra, Indonesia. Journal of Ecological Engineering, 24(7), 198-208
  • 11. Dewilda, Y., Riansyah A., Fauzi, M. 2022. Kajian Pengelolaan Sampah Makanan Hotel di Kota Padang berdasarkan Food Recovery Hierarchy. Jurnal Serambi Engineering, 7(4), 3959 – 3970
  • 12. Dewilda, Y., Aziz, R., Fauzi, M. 2019. Kajian Potensi Daur Ulang Sampah Makanan Restoran di Kota Padang. Jurnal Serambi Engineering, 2(2), 482-487
  • 13. Dias, J., Bellingham, M., Hassan, J., Barrett, M., Stephenson, T., Soares, A. 2018. Influence of carrier media physical properties on start-up of moving attached growth systems. Bioresource Technology, 266, 463–471.
  • 14. di Biase, A., Kowalski, M.S., Devlin, T.R., Oleszkiewicz. 2019. Moving bed biofilm reactor technology in municipal wastewater treatment: a review. Journal of Environmental Management, 247, 849-866.
  • 15. Dong, Y., Fan, S.-Q., Shen, Y., Yang, J.-X., Yan, P., Chen, Y.-P., Li, J., Guo, J.-S., Duan, X.- M., Fang, F., Liu, S.-Y. 2015. A novel bio-carrier fabricated using 3D printing technique for wastewater treatment. Scientific Reports, 5(1).
  • 16. Droste, R. L. 1997). Theory and Practice of Water and Wastewater Treatment, New York.
  • 17. El Essawy, N.A., Ali, S.M., Farag, H.A., Konsowa, A.H., Elnouby, M., Hamad, H.A. 2017. Green Synthesis of Graphene from Recycled PET bottles wastes for use in the Adsorption of Dyes in Aqueous Sollution. Journal Ecotoxicology and Environmental Safety, 145, 57-68.
  • 18. Espinoza, K., Fernandez, C., Perez, J., Benalcazar, D., Romero, D., Lapo, B. 2019. Support materials of fixed biofilm based on solid plastic wastes for domestic wastewater treatment. Revista Técnica de la Facultad de Ingeniería Universidad del Zulia, 42(2), 67-75.
  • 19. Fauzi, M., Soewondo, P., Nur, A. 2023. Treatment of Domestic Wastewater on Fixed-Bed Reactor Using Plastic Supporting Media – A Review. Ecological Engineering & Environmental Technology, 24(6), 276-281.
  • 20. Fauzi, M., Darnas, Y., Riansyah, A., Nanda, S. 2022. Perencanaan Sistem Pengelolaan Persampahan Kawasan Wisata Budaya Nagari Koto Gadang, Sumatra Barat. Jurnal Serambi Engineering, 7(4), 4024-4035
  • 21. Grady, C.P.L., Daigger, G.T., Love, N.G., Filipe, C.D.M. 2011. Biological Wastewater Treatment: Theory and Applications, 3rd edition. USA: CRC Press.
  • 22. Grau, P., Dahanyos, M., Chudoba, J. 1975. Kinetics of multicomponent substrate removal by activated sludge, Water Research, 9(7), 637-642.
  • 23. Goswami, S. and D. Maxumder. 2016. Comparative study between activated sludge process (ASP) and Moving Bed Bioreactor (MBBR) for treating composite chrome tannery wastewater. Materials Today proceedings, 3, 337-348.
  • 24. Habouzit, F., Gevaudan, G., Hamelin, J., Steyer, J., Bernet, N. 2011. Influence of support properties on the potential selection of Archaea during initial adhesion of a methanogenic consortium. Bioresource Technology, 102, 4054-4060.
  • 25. Huang, C., Shi, Y.J., Xue, J.K., Zhang, Y.Y., El-Din, M.G., Liu, Y. 2017. Comparison of biomass from integrated fixed-film activated sludge (IFAS), moving bed biofilm reactor (MBBR), and membrane bioreactor (MBR) treating recalcitrant organics: importance of attached biomass. Journal Hazardous Materials, 326, 120-129.
  • 26. Juniarta, I.P.S., I Wayan Budiarsa Suyasa dan IGB-Sila Dharma. 2018. Effectiveness of biofilter made from plastic waste to decrease bod, cod and ammonia of hospital wastewater. Ecotrophic, 12, 1
  • 27. Khan, M.M., Chapman, T., Cochran, K. 2013. Attachment surface energy effects on nitrification and estrogen removal rates by biofilms for improved wastewater treatment. Water Research, 47, 2190-2198.
  • 28. Kureel, M.K., Geed, S.R., Giri, B.S., dan Singh, R.S. 2017. Biodegradation and Kinetic Study of Benzene in Biorecator packed with PUF and Alginate Beads and Immobilized with Bacillus sp. M3. Bioresource Technology, 242, 92-100.
  • 29. Leyva-Díaza,J.C., Martín-Pascuala, J., González-López, J., Hontoria, E., dan Poyatos, J.M. 2013. Effects of scale-up on a hybrid moving bed biofilm reactor – membrane bioreactor for treating urban wastewater. Chemical Engineering Science, 104, 808–816.
  • 30. Liu, X., Wenke Yuan, Mingxiao Di, Zhen li, Jun Wang. 2019. Transfer and fate of microplastics during the conventional activated sludge process in one wastewater treatment plant of China. Chemical Engineering Journal, 362, 176-182.
  • 31. Mannina, G., Ekama, G.A., Capodici, M., Cosenza, A., Di Trapani, D., Odegaard, H. 2018. Integrated fixed-film activated sludge membrane bioreactors versus membrane bioreactors for nutrient removal: a comprehensive comparison. Journal of Environmental Management, 226, 347-357.
  • 32. Mansouri, A. M., et al. 2014. Kinetic Evaluation of Simultaneous CNP Removal in an Upflow Aerobic/ Anoxic Sludge Fixed Film (UAASFF) Bioreactor. Iranica Journal of Energy & Environment, 5(3), 323-336.
  • 33. Mao, Y., Quan, X., Zhao, H., Zhang, Y., Chen, S., Liu, T., Quan, W. 2017. Accelerated startup of moving bed biofilm process with novel electrophilic suspended biofilm carriers. Chemical Engineering Journal, 315, 364–372.
  • 34. Metcalf, Eddy. 2013. Wastewater Engineering: Treatment and Reuse, fifth ed. McGraw-Hill, New York, New York, ISBN 978-0-07-340118-8.
  • 35. Nur, A., Fauzi, M., Soewondo, P., Setiyawan, A.S., Oginawati, K. 2022. The Occurrence of Microplastics on the Start-Up Process of an Anoxic Biofilm Batch Reactor. International Journal of Geomate, 22(90), 63-70.
  • 36. Nur, A., Soewondo, P., Oginawati, K., Setiyawan, A.S. 2021. Current Overview of Polyethylene Terephthalate as Biofilm Media in Communal Wastewater Treatment Plants in Indonesia. Sanitation Value Chain, 5(1).
  • 37. Peng, P., Huang, H., Ren, H., Ma, H., Lin Y., Geng J., Xu, K., Zhang Y., Ding, L. 2018. Exogenous N-acyl Homoserine Lactones Facilitate Microbial Adhesion of High Ammonia Nitrogen Wastewater on Biocarrier Surfaces. Science of the Total Environment, 624, 1013-1022.
  • 38. PT. Chandra Asri Petrochemical. 2017. Company Presentation. https://www.chandra-asri.com/. Accessed 20 May 2023
  • 39. Radityaningrum, A.D., dan Maritha Nilam Kusuma. 2017. Perbandingan kinerja media biofilter anaerobic biofilter dalam penurunan TSS, BOD, COD pada grey water. Jukung Jurnal Teknik Lingkungan, 3, 25-34.
  • 40. Setiyawan, A.S., Nur, A., Fauzi, M., Oginawati, K., Soewondo, P. 2023. Effect of Different Polymeric Materials on the Bacterial Attachment and Biofilm Formation in Anoxic Fixed-Bed Biofilm Reactors. Water, Air, and Soil Pollution, 234.
  • 41. Shen, Y., Gao, J., Li, L. 2017. Municipal wastewater treatment via co-immobilized microalgal-bacterial symbiosis: Microorganism growth and nutrients removal. Bioresource Technology, 243, 905-913.
  • 42. Sriwiriyarat, T., Randall, C. 2005. Evaluation of integrated fixed-film activated sludge wastewater treatment processes at high mean cells residence time and low temperatures. Journal of Environmental Engineering, 131(11), 1550-1556
  • 43. Tang, B., Zhao, Y., Bin, L., Huang, S., Fu, F. 2017. Variation of the characteristics of biofilm on the semi-suspended bio-carrier produced by a 3D printing technique: investigation of a whole growing cycle. Bioresour. Technol. 244, 40–47
  • 44. Tang, B., Yu, C., Bin, L., Zhao, Y., Feng, X., Huang, S., Fu, F., Ding, J., Chen, C., Li, P., Chen, Q. 2016. Essential factors of an integrated moving bed biofilm reactor-mem- brane bioreactor: Adhesion characteristics and microbial community of the biofilm. Bioresource Technology, 211, 574–583.
  • 45. Tchobanoglous, G., Stensel, H.D., Tzuchihashi, R., dan Burton, F. 2014. Wastewater Engineering – Treatment and Resource Recovery, fifth edition, McGraw-Hill, New York.
  • 46. Tchobanoglous, G. dan Burton, F.L. 2003. Wastewater Engineering – Treatment and Reuse, third edition, McGraw-Hill, New York
  • 47. Wang, L., Liu, J.L., Zhao, Q.Y., Wei, W., Sun, Y.H. 2016. Comparative study of wastewater treatment and nutrient recycle via activated sludge, microalgae, and combination systems. Bioresource Technology, 211, 1-5.
  • 48. Xu, K.D., Stewart, P.S., Xia, F., Huang, C.-T., and Mcfeters, G.A. 1998. Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Applied and environmental microbiology, 64, 4035–4039.
  • 49. Zhao, R.Z., Zhao, H., Dimassimo, R., Xu, G.R. 2018. Pilot scale study of sequencing batch reactor (SBR) retrofit with integrated fixed film activated sludge (IFAS): nitrogen removal and design consideration. Environmental Science: Water Research & Technology, 4(4), 569-581.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0bb30c24-de77-43e6-94e2-3a5d3b531959
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.