PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Density and water absorption coefficient of sandcrete blocks produced with waste paper ash as partial replacement of cement

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The literature is flooded with scientific information on most durability properties except water absorption coefficient of masonry units like sandcrete blocks. Also, while waste papers disposal is a systemic problem due to ineffectiveness of waste management system in developing countries, the price of cement is on the increase. This situation, ultimately, causes a bane in achievement of low-cost housing development considering the fact that sandcrete blocks are predominantly used as walling elements for such undertakings. In this study, solid core sandcrete blocks were produced with waste paper ash (WPA) utilized as partial replacement of cement at 5 % and 10 % volumetric levels. Chemically, the WPA was found to show similarity with cement in terms of SiO2, Al2O3, and CaO contents. Density and water absorption coefficient of the block samples were determined. While density ranged from 1682 to 1872 kg/m3, water absorption coefficient varied from 27.04 to 23.49 kg/m2h0.5. Statistically, no significant difference was revealed at 𝑝<0.05 between experimentally-measured water absorption coefficients and those obtained using the model developed for prediction based on density of the samples. Thus, utilization of WPA as described herein could help to reduce the cost of procuring cement and in turn, enhance low-cost building construction. Also, with the developed model (showing dependence of water absorption coefficient on density), durability of sandcrete blocks exposed to moisture –prone environment could be easily predicted.
Rocznik
Strony
85--97
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
  • Department of Physics, Akwa Ibom State University, Ikot Akpaden, Mkpat Enin, Nigeria
  • Department of Chemistry, Archivers University, Owo, Ondo State, Nigeria
  • Department of Geological Sciences, Archivers University, Owo, Ondo State & Department of Geology, University of Ibadan, Oyo State, Nigeria
  • Department of Physics, Akwa Ibom State University, Ikot Akpaden, Mkpat Enin, Nigeria
Bibliografia
  • 1. N.E. Ekpenyong, G.P. Umoren, I.E. Udo, O.J. Yawo (2022): Assessment of Thermophysical and Mechanical Properties of Composite Panels Fabricated from Untreated and Treated Coconut Husk Particles for Structural Application, Brilliant Engineering, 2; 1-5, https://doi.org/10.36937/ben.2022.4547
  • 2. B.M. Kejela (2020): Waste Paper Ash as partial replacement of cement in concrete, American Journal of Construction and Building Materials, 4(1); 8–13. https://doi.org/10.11648/j.ajcbm.2020401.12
  • 3. U.W. Robert, S.E. Etuk, G.P. Umoren, O.E. Agbasi (2019): Assessment of thermal and mechanical properties of composite board produced from coconut (Cocos nucifera) husks, waste newspapers, and cassava starch, International Journal of Thermophysics, 40(9):1 - 12, https://doi.org/10.1007/s10765-019-2547-8
  • 4. E.U. Nathaniel, U.W. Robert, M.E.Asuquo (2020): Evaluation of Properties of Composite Panels Fabricated from Waste Newspaper and Wood Dust for Structural Application, Journal of Energy Research and Reviews, 5(1): 8-15, https://doi.org/10.9734/JENRR/2020/v5i130138
  • 5. U.W. Robert, S.E. Etuk, U.A. Iboh, G.P. Umoren, O.E. Agbasi, Z.T. Abdulrazzaq (2020): Thermal and mechanical properties of fabricated plaster of paris filled with groundnut seed coat and waste newspaper materials for structural application, Építôanyag-Journal of Silicate Based and Composite Materials, 72(2); 72 – 78,https://doi.org/10.14382/epĩtõanyag-jsbcm.2020.12
  • 6. B.A. Solahuddin, F.M. Yahaya (2021): Effect of Shredded Waste Paper on Properties of Concrete, 4th National Conference on Wind & Earthquake Engineering, IOP Conf. Series: Earth and Environmental Science, 682; 012006, https://doi.org/10.1088/1755-1315/682/1/012006
  • 7. B. A. Solahuddin, F. M. Yahaya (2021): Inclusion of Waste Paper on Concrete Properties: A Review, Civil Engineering, 7; 94 – 113, https://dx.doi.org/10.28991/CEJ-SP2021-07-07
  • 8. B.B. Mitikie, D.T. Waldtsadik (2022): Partial Replacement of Cement by Waste Paper Pulp Ash and Its Effect on Concrete Properties, Advances in Civil Engineering, 8880196, https://doi.org/10.1155/2022/8880196
  • 9. S. Subanndi, F. Agustina, V. Vebrian, R. Azzahra (2020): Waste Paper Ash as Additives for High Strength Concrete Mix 45 MPa, Annales de Chimie Science des Matériaux, 44(2); 91 – 96, https://doi.org/10.18280/acsm.440203
  • 10. B. Meko, J. Ighalo (2021): Utilization of waste paper ash as supplementary cementitious material in C-25 concrete: Evaluation of fresh and hardened properties, Cogent Engineering, 8:1, 1938366, https://doi.org/10.1080/23311916.2021.1938366
  • 11. J.P. Azar, M. Najarchi, B. Sanaati et al (2019): The experimental assessment of the effect of paper waste ash and silica fume on improvement of concrete behavior, KSCE Journal of Civil Engineering., 23; 4503 – 4515, https://doi.org/10.1007/s12205-019-0678-x
  • 12. U.W. Robert, S.E. Etuk, O.E. Agbasi, G.P. Umoren, S.S. Akpan, L.A. Nnanna (2021): Hydrothermally-calcined waste paper ash nanomaterial as an alternative to cement for clay soil modification for building purposes, Acta Polytechnica, 61(6); 749–761, https://doi.org/10.14311/AP.2021.61.0749
  • 13. M. O’mara, How much paper is used in one day? Record Nations, March 26, 2021, www.recordnations.com
  • 14. R.W.J. McKinney (1995): Technology of paper recycling, Blackie Academic and Professional, Chapman and Hall, New York, London, pp. 7 – 15
  • 15. L. Simäo, D. Hotza, F. Raupp-Pereira, J.A. Labrincha, O.R.K. Montedo (2018): Wastes from pulp and paper mills – a review of generation and recycling alternatives, Cerāmica, 64 (371), https://doi.org/10.1590/0366-6913
  • 16. U.W. Robert, S.E. Etuk, J.B. Emah, O.E. Agbasi, U.A.Iboh (2022): Thermophysical and Mechanical Properties of Clay-Based Composites developed with Hydrothermally Calcined Waste Paper Ash Nanomaterial for Building Purposes, International Journal of Thermophysics, 43(5); 1 - 20, https://doi.org/10.1007/s10765-022-02995-1
  • 17. A.E. Adeniran, A. Nubi, A. Adelopo (2017): Solid waste generation and characterisation in the University of Lagos for a sustainable waste management, Waste Management, 67;3 – 10,https://doi.org/10.1016/j.wasman.2017.05.002
  • 18. U.W. Robert, S.E. Etuk, O.E. Agbasi, U.S. Okorie, A. Lashin (2021): Hygrothermal properties of sandcrete blocks produced with raw and hydrothermally-treated sawdust as partial substitution materials for sand, Journal of King Saud University – Engineering Sciences, https://doi.org/10.1016/j.jksues.2021.10.005
  • 19. U.W. Robert, S.E. Etuk, O.E. Agbasi, S.A. Ekong (2020): Properties of sandcrete block produced with coconut husk as partial replacement of sand, Journal of Building Materials and Structures, 7(1); 95 – 104, https://doi.org/10.5281/zenodo.3993274
  • 20. G.L. Oyekan, O.M. Kamiyo (2011): A case study on the engineering properties of sandcrete blocks produced with rice husk ash blended cement, Journal of Engineering and Technology Research, 3(2); 88 – 98, https://doi.org/www.academicjournals.org/JETR
  • 21. W. Khan, M. Fahim, S. Zaman, S.W. Khan, Y.I. Badrashi, F. Khan (2021): Use of rice husk ash as partial replacement of cement in sandcrete block, Advances in Science and Technology. Research Journal, 15(2); 101 – 107, https://doi.org/10.12913/22998624/133470
  • 22. M.I. Aho, J.T, Utsev (2008): Compressive strength of hollow sandcrete blocks made with rice husk ash as a partial replacement to cement, Nigerian Journal of Technology, 27(2)
  • 23. T. Alkamu, I. Emmanuel, E.P. Datok, D.D. Jambol (2018): Guinea corn husk ash as partial replacement of cement in hollow sandcrete block production, International Journal of Modern Trends in Engineering and Research, 5(6); 13 – 19, https://doi.org/10.21884/ijmter.2018.5163.xljyk
  • 24. H. Mahmoud, Z.A. Belel, C. Nwakaire (2012): Groundnut shell ash as a partial replacement of cement in sandcrete blocks production, International Journal of Development and Sustainability, 1(3); 1026 - 1032
  • 25. IC. Christopher, O.I. Ndubuisi, N.D. Chimobi, O.V. Arinze, J.N. Ezema (2018): Partial replacement of cement with coconut shell ash in sandcrete block, Research Journal of Applied Sciences, Engineering and Technology, 15(6); 206–211, https://doi.org/10.19026/rjaset.15.5859
  • 26. U.W. Robert, S.E. Etuk, O.E. Agbasi, G.P. Umoren, N.J. Inyang (2021): Investigation of thermophysical and mechanical properties of board produced from coconut (Cocos nucifera) leaflet. Environmental Technology & Innovation, 24(1), 101869, https://doi.org/10.1016/j.eti.2021/101869
  • 27. M. Bediako, E.O. Amankwah (2015): Analysis of chemical composition of cement in Ghana: A key to understand the behaviour of cement, Advances in Materials Science and Engineering, 349401, 1–5. https://doi.org/10.1155/2015/349401
  • 28. U.W. Robert, S.E. Etuk, O.E. Agbasi, U.S. Okorie, Z.T. Abdulrazzaq, A.U. Anonaba, O.T. Ojo (2021): On the hygrothermal properties of sandcrete blocks produced with sawdust as partial replacement of sand, Journal of the Mechanical Behavior of Materials, 30(1); 144–155, https://doi.org/10.1515/jmbm-2021- 0015
  • 29. BS 2028 (1975): British Standard Institute, Precast concrete blocks, London
  • 30. ASTM C150 (2020): Standard Specification for Portland Cement, ASTM International, West Conshohocken, PA
  • 31. U.W. Robert, S.E. Etuk, O.E. Agbasi, S.A. Ekong, Z.T. Abdulrazzaq, A.U. Anonaba (2021): Investigation of Thermal and Strength Properties of Composite Panels Fabricated with Plaster of Paris for Insulation in Buildings, International Journal of Thermophysics, 42(2), 1-18, https://doi.org/10.1007/s10765-020-02780-y
  • 32. S.E. Etuk, O.E. Agbasi, S.S. Ekpo, U.W. Robert, (2020): Gamma Radiation determination of absorption coefficients of cement sand block, Cumhuriyet Science Journal, 41(1), 38 – 42; https://dx.doi.org/10.177776/csj.624318
  • 33. S.E. Etuk, O.E. Agbasi, Z.T. Abdulrazzaq, U.W. Robert (2018): Investigation of thermophysical properties of Alates (swarmers) termites wing as potential raw material for insulation, International Journal of Scientific World, 6(1), 1 – 7, https.//doi.org/10.14419/ijsw.v6i1.8529
  • 34. U.W. Robert, S.E. Etuk, O.E. Agbasi, G.P. Umoren (2020): Comparison of clay soils of different colors existing under same conditions in a location, Imam Journal of Applied Sciences, 5(2); 68 – 73, https://doi.org/10.4103/ijas_35 _ 19
  • 35. USP (2007): Powder Flow. In: The United States Pharmacopeia 30-National Formulary 25 Convention, Rockville.
  • 36. H. Lu, X. Guo, Y. Liu, X. Gong (2015): Effects of particle size on flow mode and flow characteristics of pulverized coal, Kona Powder Part I, 32; 143–153. https://doi.org/10.14356/kona.2015002
  • 37. ASTM C618 (2019): Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for use in concrete, ASTM International, West Conshohocken.
  • 38. B.M. Alssoun, S. Hwang, K.H. Khayat (2015): Influence of aggregate characteristics on workability of superworkable concrete, Materials and Structures, 49(1), https://doi.org/10.1617/s11527-015-0522-9
  • 39. M. Kang, L. Weibin (2018): Effect of the recycled aggregate concrete, Advances in Materials Science and Engineering, 2428576, https://doi.org/10.1155/2018/2428576
  • 40. B. Nagy, D. Szagri (2016): Hygrothermal properties of steel fiber reinforced concretes, Applied Mechanics and Materials, 824; 579–588, https://doi.org/10.4028/www.scientific.net/AMM.824.579
  • 41. C. Egenti, J. M. Khatib, D. Oloke (2013): Analysis of expansion and water absorption of composite compressed earth block, Conference Paper, https://www.researchgate.net/publication
  • 42. B.K. Baiden, M.M. Tuuli (2004): Impact of Quality Control Practices in Sandcrete Blocks Production, Journal of Architectural Engineering, 10(2), 53–60
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0baa5276-45b7-4899-9775-c1228ed4de03
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.