PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effective atomic number and photon buildup factor of bismuth doped tissue for photon and particles beam interaction

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: The doping of high Z nanoparticles into the tumor tissue increases the therapeutic efficiency of radiotherapy called nanoparticle enhanced radiotherapy (NERT). In the present study, we are identifying the effective types of radiation and effective doping concentration of bismuth radiosensitizer for NERT application by analyzing effective atomic number (Zeff) and photon buildup factor (PBF) of bismuth (Bi) doped soft tissue for the photon, electron, proton, alpha particle, and carbon ion interactions. Material and methods: The direct method was used for the calculation of Zeff for photon and electron beams (10 keV-30 MeV). The phy-X/ZeXTRa software was utilized for the particle beams such as proton, alpha particle, and carbon ions (1-15 MeV). Bismuth doping concentrations of 5, 10, 15, 20, 25 and 30 mg/g were considered. The PBF was calculated over 15 keV-15 MeV energies using phy-X/PSD software. Results: The low energy photon (<100 keV) interaction with a higher concentration of Bi dopped tissue gives the higher values of Zeff. The Zeff increased with the doping concentration of bismuth for all types of radiation. The Zeff was dependent on the type of radiation, the energy of radiation, and the concentration of Bi doping. The particle beams such as electron, proton, alpha particle, and carbon ion interaction gives the less values of Zeff has compared to photon beam interaction. On the other hand, the photon buildup factor values were decreased while increasing the Bi doping concentration. Conclusions: According to Zeff and PBF, the low energy photon and higher concentration of radiosensitizer are the most effective for nanoparticle enhanced radiotherapy application. Based on the calculated values of Zeff, the particle beams such as electron, proton, alpha particle, and carbon ions were less effective for NERT application. The presented values of Zeff and PBF are useful for the radiation dosimetry in NERT.
Rocznik
Strony
37--51
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Department of Radiotherapy, Sterling Ramkrishna speciality Hospitals, Gandhidham, Gujarat, India 370 201
  • School of advanced sciences, VIT University, Vellore, Tamilnadu, India 632 014
  • Department of Radiotherapy, Sterling Ramkrishna speciality Hospitals, Gandhidham, Gujarat, India 370 201
Bibliografia
  • 1. Roeske JC, Nunez L, Hoggarth M, Labay E, Weichselbaum RR. Characterization of the theoretical radiation dose enhancement from nanoparticles. Technol Cancer Res Treat. 2007;6(5):395-401. https://doi.org/10.1177/153303460700600504
  • 2. Kwatra D, Venugopal A, Anant S. Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl Cancer Res. 2013;2(4):330-42
  • 3. Liu Y, Zhang P, Li F, Jin X, Li J, Chen W, Li Q. Metal-based Nano Enhancers for Future Radiotherapy: Radiosensitizing and Synergistic Effects on Tumor Cells. Theranostics. 2018;8(7):1824-1849. https://doi.org/10.7150/thno.22172
  • 4. Kuncic Z, Lacombe S. Nanoparticle radio enhancement: principles, progress, and application to cancer treatment. Phys Med Biol. 2018;63(2):02TR01. https://doi.org/10.1088/1361-6560/aa99ce
  • 5. Mehrnia SS, Hashemi B, Mowla SJ, Arbabi A. Enhancing the effect of 4MeV electron beam using gold nanoparticles in breast cancer cells. Phys Med. 2017;35:18-24. https://doi.org/10.1016/j.ejmp.2017.02.014
  • 6. Peukert D, Kempson I, Douglass M, Bezak E. Metallic nanoparticle radio sensitization of ion radiotherapy: A review. Phys Med. 2018;47:121-128. https://doi.org/10.1016/j.ejmp.2018.03.004
  • 7. Stewart C, Konstantinov K, McKinnon S, Guatelli S, Lerch M, Rosenfeld A, Tehei M, Corde S. First proof of bismuth oxide nanoparticles as efficient radiosensitizers on highly radioresistant cancer cells. Phys Med. 2016;32(11):1444-1452. https://doi.org/10.1016/j.ejmp.2016.10.015
  • 8. Ghorbani M, Salahshour F, Haghparast A, Moghaddas TA, Knaup C. Effect of tissue composition on dose distribution in brachytherapy with various photon emitting sources. J Contemp Brachytherapy. 2014;6(1):54-67. https://doi.org/10.5114/jcb.2014.42024
  • 9. Manohara SR, Hanagodimath SM, Gerward L. Energy absorption buildup factors of human organs and tissues at energies and penetration depths relevant for radiotherapy and diagnostics. J Appl Clin Med Phys. 2011;12(4):3557. https://doi.org/10.1120/jacmp.v12i4.3557
  • 10. Kurudirek M. Effective atomic number of soft tissue, water and air for interaction of various hadrons, leptons and isotopes of hydrogen. Int J Radiat Biol. 2017;93(12):1299-1305. https://doi.org/10.1080/09553002.2018.1388546
  • 11. Kurudirek M, Özdemir Y. Energy absorption and exposure buildup factors for some polymers and tissue substitute materials: photon energy, penetration depth and chemical composition dependence. J Radiol Prot. 2011;31(1):117-28. https://doi.org/10.1088/0952-4746/31/1/008
  • 12. Sayyed MI, Elhouichet H. Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for boro-tellurite (B2O3-TeO2) glasses. Radiat. Phys. Chem 2017:130;335-342. https://doi.org/10.1016/j.radphyschem.2016.09.019
  • 13. Sathiyaraj P, Samuel EJJ, Valeriano CCS, Kurudirek M. Effective atomic number and buildup factor calculations for metal nanoparticle doped polymer gel. Vacuum 2017:143;138-149. https://doi.org/10.1016/j.vacuum.2017.06.005
  • 14. Saleh HH, Sharaf JM, Alkhateeb SB, Hamideen MS. Studies on equivalent atomic number and photon buildup factors for some tissues and phantom materials. Radiat. Phys. Chem. 2019:165;108388. https://doi.org/10.1016/j.radphyschem.2019.108388
  • 15. Manjunatha HC, Rudraswamy B. Computation of exposure buildup factors in teeth. Radiation Physics and Chemistry. 2011;80(1):14-21. https://doi.org/10.1016/j.radphyschem.2010.09.004
  • 16. Berger M, Hubbell J, Seltzer S, Chang J, Coursey J, Sukumar R, Zucker D, Olsen K. XCOM: Photon Cross Sections Database (NIST). 2010
  • 17. Berger MJ, Coursey JS, Zucker MA, Chang J. Stopping-Power & Range Tables for Electrons, Protons, and Helium Ions. NISTIR 4999, 2017:1-17. https://doi.org/10.18434/T4NC7P
  • 18. Farahani S, Riyahi Alam N, Haghgoo S, Shirazi A, Geraily G, Gorji E, Kavousi N. The effect of bismuth nanoparticles in kilovoltage and megavoltage radiation therapy using magnetic resonance imaging polymer gel dosimetry. Radiat. Phys. Chem. 2020;170:108573. https://doi.org/10.1016/j.radphyschem.2019.108573
  • 19. Kurudirek M, Aksakal O, Akkuş T. Investigation of the effective atomic numbers of dosimetric materials for electrons, protons and alpha particles using a direct method in the energy region 10 keV-1 GeV: a comparative study. Radiat. Environ. Biophys. 2015;54, 481-492. https://doi.org/10.1007/s00411-015-0606-5
  • 20. Kurudirek M, Onaran T. Calculation of effective atomic number and electron density of essential biomolecules for electron, proton, alpha particle and carbon ion. Radiat. Phys. Chem. 2015;112:125-138. https://doi.org/10.1016/j.radphyschem.2015.03.034
  • 21. Manohara SR, Hanagodimath SM, Thind KS, Gerward L. On the effective atomic number and electron density: A comprehensive set of formulas for all types of materials and energies above 1 keV. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. With Mater. Atoms 2008:266, 3906-3912. https://doi.org/10.1016/j.nimb.2008.06.034
  • 22 Özpolat ÖF, Alım B, Şakar E, Büyükyıldız M, Kurudirek M. Phy-X/ZeXTRa: a software for robust calculation of effective atomic numbers for photon, electron, proton, alpha particle, and carbon ion interactions. Radiat. Environ. Biophys. 2020;59:321-329. https://doi.org/https://doi.org/10.1007/s00411-019-00829-7
  • 23. Jarrah I, Radaideh MI, Kozlowski T, Rizwan-uddin. Determination and validation of photon energy absorption buildup factor in human tissues using Monte Carlo simulation. Radiat. Phys. Chem. 2019;160:15-25. https://doi.org/10.1016/j.radphyschem.2019.03.008
  • 24. Şakar E, Özpolat ÖFm Alım B, Sayyed MI, Kurudirek M. Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 2020;166:108496. https://doi.org/10.1016/j.radphyschem.2019.108496
  • 25. Taylor ML, Smith RL, Dossing F, Franich RD. Robust calculation of effective atomic numbers: The Auto-Zeff software. Med. Phys. 2012;37:1769-1778. https://doi.org/10.1118/1.3689810
  • 26. Kurudirek M. Effective atomic numbers, water and tissue equivalence properties of human tissues, tissue equivalents and dosimetric materials for total electron interaction in the energy region 10 keV-1 GeV. App. Radiat. Isot. 2014;94:1-7. https://doi.org/10.1016/j.apradiso.2014.07.002
  • 27. Salehi D, Sardari D, Jozani MS. Investigation of some radiation shielding parameters in soft tissue. J. Radiat. Res. Appl. Sci. 2015:8(3):439-445. https://doi.org/10.1016/j.jrras.2015.03.004
  • 28. Singh VP, Badiger NM. Effective atomic numbers of some tissue substitutes by different methods: A comparative study. J.Med.Phy. 2014:39;24-31. https://doi.org/10.4103/0971-6203.125489
  • 29. Sisin NNT, Abdul Razak K, Zainal Abidin S, et al. Radiosensitization Effects by Bismuth Oxide Nanoparticles in Combination with Cisplatin for high Dose Rate Brachytherapy. Int. J. Nanomedicine. 2019;14:9941-9954. https://doi.org/10.2147/IJN.S228919
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ba4096c-b9df-421c-b79c-9c443e4416d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.