PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Restoration of load-bearing structures in a multi-storey residential building after a fire caused by military operations

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Renowacja konstrukcji nośnych w wielokondygnacyjnym budynku mieszkalnym po pożarze spowodowanym działaniami wojennymi
Języki publikacji
EN
Abstrakty
EN
This article presents the visual and instrumental investigations, along with the necessary engineering and technical decisions, for restoring load-bearing structures of multi-storey residential buildings damaged by fire due to war. It is economically advisable to replace and strengthen 20% of the emergency floor slabs and 16% of the load-bearing walls to allow residents to return to their homes as soon as possible. The temperature during the fire was determined using specific samples of damaged materials, building structures, and equipment, which allowed for a more accurate assessment of the damage to brick walls and prefabricated reinforced concrete floor slabs. The possibility of further use of the building was also determined based on a survey and necessary measurements of its structures, including the determination of physical and mechanical characteristics (crack width, flexures, concrete strength, brick grade, and mortar grade). The prefabricated reinforced concrete round hollow floor slabs had delaminated along the ribs between the hollows, showing sagging. The bricks had changed colour and were destroyed to a depth of 120 mm (internal walls were destroyed to this depth on both sides). Considering the extent of the damage to the load-bearing structures, it is recommended that the inter-floor ceilings, load-bearing walls, and partitions be replaced and strengthened. For structures that do not require replacement or reinforcement, the justification for their continued safe operation has been completed in accordance with the construction standards and regulations in force in Ukraine.
PL
W artykule przedstawiono badania wizualne i instrumentalne oraz niezbędne decyzje inżynieryjno-techniczne dotyczące renowacji konstrukcji nośnych wielokondygnacyjnych budynków mieszkalnych uszkodzonych w wyniku pożaru spowodowanego działaniami wojennymi. Ekonomicznie uzasadnione jest zastąpienie i wzmocnienie 20% awaryjnych płyt stropowych oraz 16% ścian nośnych, aby umożliwić jak najszybszy powrót mieszkańców do domów. Temperaturę podczas pożaru określono za pomocą próbek uszkodzonych materiałów, elementów budowlanych oraz wyposażenia, co pozwoliło na dokładniejszą ocenę zniszczeń ścian ceglanych i prefabrykowanych żelbetowych płyt stropowych. Możliwość dalszego użytkowania budynku została określona na podstawie badań i niezbędnych pomiarów jego konstrukcji, w tym wyznaczenia właściwości fizycznych i mechanicznych (szerokość pęknięć, ugięcia, wytrzymałość betonu, klasa cegły i klasa zaprawy). Prefabrykowane żelbetowe okrągłe płyty stropowe wykazywały rozwarstwienia wzdłuż żeber między pustkami i były wygięte. Cegły zmieniły kolor i zostały zniszczone na głębokość 120 mm (wewnętrzne ściany były zniszczone na tę głębokość z obu stron). Biorąc pod uwagę stopień zniszczenia konstrukcji nośnych, zaleca się wymianę i wzmocnienie stropów międzykondygnacyjnych, ścian nośnych i przegród. W przypadku konstrukcji, które nie wymagają wymiany ani wzmocnienia, uzasadniono możliwość ich dalszej bezpiecznej eksploatacji zgodnie z obowiązującymi normami budowlanymi i przepisami w Ukrainie.
Rocznik
Strony
43--53
Opis fizyczny
Bibliogr. 30 poz., fig.
Twórcy
  • Department of Building Constructions and Bridges; Institute of Civil Engineering and Building System; Lviv Polytechnic National University
  • Department of Building Constructions and Bridges; Institute of Civil Engineering and Building System; Lviv Polytechnic National University
  • Department of Building Constructions and Bridges; Institute of Civil Engineering and Building System; Lviv Polytechnic National University
Bibliografia
  • [1] Kramarchuk A., Ilnytskyy B., Lytvyniak O., “The influence of fire loading on the bearing prefabricated reinforced concrete structures of sports riffle school in Rivne city”, AIP Conference Proceedings, vol. 2949(1), (2023), 020017. https://doi.org/10.1063/5.0165385
  • [2] Nekora V., Sidnei S., Shnal T., Nekora O., “The improvement of the method to determine the temperature in steel reinforced concrete slabs in assessment of their fire resistance”, Materials Science Forum, vol. 1066, (2022), 216-223. https://doi.org/10.4028/p-3gvljr
  • [3] Dilsiz A., Haj Ismail S., “Documentation and assessment of war induced damage on historic buildings in Aleppo”, Journal of Architectural Conservation, vol. 26(3), (2020), pp. 291–308. https://doi.org/10.1080/13556207.2020.1804734
  • [4] Larkham P.J., Adams D., “Relics of war: damaged structures and their replacement or management in modern landscapes”, Sustainability, vol. 14, (2022), 13513. https://doi.org/10.3390/su142013513
  • [5] Ghandour A. J., Jezzini A. A., “Post-war building damage detection”, Proceedings, vol. 2, (2018), 359. https://doi.org/10.3390/ecrs-2-05172
  • [6] Sinyakin А, Panchenko O, Hladyshev H, Hladyshev D, Sobko Y., “The renovation technology of structures that has lost reliability during long-term operation in an aggressive environment”, 5th International scientific and practical conference “Innovative technology in architecture and design” (ITAD-2021) 20–21 May 2021, Kharkiv, Ukraine.
  • [7] Selejdak J., Bobalo T., Blikharskyy Y., Dankevych I., “Mathematical modelling of stress-strain state of steel-concrete beams with combined reinforcement”, Production Engineering Archives, vol. 29(1), (2023), pp. 108-115. https://doi.org/10.30657/pea.2023.29.13
  • [8] Medić S., Ćurić J., Imamović I., Ademović N., Dolarević S., “Illustrative examples of war destruction and atmospheric impact on reinforced concrete structures in Sarajevo”, In: Ibrahimbegovic, A., Zlatar, M. (eds) Damage assessment and reconstruction after war or natural disaster. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2386-5_15
  • [9] Rashwani A., et al., “Rebuilding Syria from the rubble: recycled concrete aggregate from war-destroyed buildings”, Journal of Materials in Civil Engineering. vol. 35(4), (2023), 04023010. https://doi.org/10.1061/(ASCE)MT.1943-5533.00046
  • [10] Boloorani, A. D., et al., “Post-war urban damage mapping using InSAR: the case of Mosul City in Iraq”, ISPRS International Journal of Geo-Information, vol. 10(3), (2021), 140. https://doi.org/10.3390/ijgi10030140
  • [11] Karadayi A., Shamma M. S., “The impact of harmonious reconstruction with the urban environment in enhancing the belonging and architectural identity of damaged buildings by wars and disasters”, LIVENARCH VI, 369, 2019.
  • [12] Aimaiti Y., Sanon C., Koch M., Baise L. G., Moaveni, B., “War related building damage assessment in Kyiv, Ukraine, using Sentinel-1 radar and Sentinel-2 optical images”, Remote Sensing, vol. 14(24), (2022), 6239. https://doi.org/10.3390/rs14246239
  • [13] Nekora V., Sidnei S., Shnal T., Nekora O., Dankevych I., Pozdieiev S., “Determination of features of composite steel and concrete slab behaviour under fire condition”, Eastern-European Journal of Enterprise Technologies, vol. 6/7, (2022), pp. 59-67. https://doi.org/10.15587/1729-4061.2021.246805
  • [14] Musiaka Ł., Sudra P., Spórna T., “Spatial chaos as a result of war damage and post-war transformations. Example of the small town of Węgorzewo”, Land, vol. 10(5), (2022), 541, https://doi.org/10.3390/land10050541
  • [15] Łotysz S., “Reconstruction of war damaged buildings-a problem that still stands. The case of the national economy bank in Warsaw restored during the second world war”, Civil and environmental engineering reports, vol. 23(4), (2016), pp. 111-124.
  • [16] Jelenski T., “Practices of Built Heritage Post-Disaster Reconstruction for Resilient Cities”, Buildings, vol. 8(4), (2018), 53. https://doi.org/10.3390/buildings8040053
  • [17] Burchenya S., Vikhot S., Surmai M., Mishchenko Y., “The results of the technical inspection of the production building on Buika street, house 24 in the City of Lviv”, AIP Conference Proceedings, vol. 2949(1) (2023), 020003. https://doi.org/10.1063/5.0165906
  • [18] Vybranets Y., Vikhot S., Burchenya S., “Field tests and analysis of flat monolithic reinforced concrete slabs”, in Proceedings of CEE 2023, CEE 2023, Lecture Notes in Civil Engineering, vol 438. Springer, Cham. https://doi.org/10.1007/978-3-031-44955-0_49
  • [19] Shnal T. M., Pavlyuk Yu. E., Stasiuk M. I., Karhut I. I., Shtangret B. S., “Temperature development of a fire in a one-story industrial building with a reinforced concrete frame”, Fire safety (Пожежна Безпека), Vol. 10 (2007), 12-16
  • [20] Blikharskyy Y, Vegera P, Kopiika N., “Bearing capacity of reinforced concrete beams with and without damages of rebar”, Production Engineering Archives, vol. 29(3), (2023), pp. 298-303. https://doi.org/10.30657/pea.2023.29.34
  • [21] Kramarchuk A., Ilnytskyy B., Hladyshev D., Lytvyniak O., “Strengthening of the reinforced concrete tank of anaerobic purification plants with the manufacture of biogas, damaged as a result of design and construction errors”, in International Scientific Conference Energy Efficiency in Transport, EET-2020, IOP Conference Series: Materials Science and Engineering, 1021, (2020), 012077. https://doi.org/10.1088/1757-899X/1021/1/012017
  • [22] Ilyin N. A., Technical examination of buildings damaged by fire, Moscow: Stroyizdat, 1983.
  • [23] Awoyera P. O., et al., “Forensic investigation of fire-affected reinforced concrete buildings”, IOSR Journal of Mechanical and Civil Engineering, vol. 11(4), (2014), 17-23.
  • [24] Gorbett G. E., Meacham B. J., Wood C. B., et al., “Use of damage in fire investigation: a review of fire patterns analysis, research and future direction”, Fire Science Reviews, vol. (4), (2015), 4 https://doi.org/10.1186/s40038-015-0008-4
  • [25] Gorbett G. E., Meacham B. J., Wood C. B. et al., “Structure and evaluation of the process for origin determination in compartment fires”, Fire Technology, vol. 53, (2017), 301–327. https://doi.org/10.1007/s10694-015-0553-3
  • [26] Lee W. Y., et al., “Forensic engineering of fire damaged concrete structures–a review”, IOP Conference Series: Earth and Environmental Science, vol. 357(1), (2019), 012021. https://doi.org/10.1088/1755-1315/357/1/012021
  • [27] Gorbett G. E., “Computer fire models for fire investigation and reconstruction”, International Symposium on Fire Investigation and Technology. 2008.
  • [28] Awoyera P., Arum C., Akinwumi I. I., “Significance of concrete cover to reinforcement in structural element at varying temperatures”, International Journal of Scientific & Engineering Research, vol. 5(6), (2014), 1120-1123.
  • [29] Gosain N. K., Drexler R. F., Choudhuri D., “Evaluation and repair of fire-damaged buildings”, Structure Engineering Magazine, vol. 9, (2008).
  • [30] Ingham J., “Forensic engineering of fire-damaged structures”, Proceedings of the Institution of Civil Engineers - Civil Engineering, vol. 162(5). (2009), 12-17. https://doi.org/10.1680/cien.2009.162.5.12
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ba0a5fa-f738-4a93-9f11-d71e53b44e75
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.