PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spatial variability of average annual and monthly minimum river flow in Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Przestrzenne zróżnicowanie średniego minimalnego rocznego przepływu na obszarze Polski
Języki publikacji
EN
Abstrakty
EN
The aim of this article is to analyse the spatial variability of SNQ, the average annual minimum river flow, as well as SNQm (m = 1, 2, …12), the average monthly minimum river flow in Poland. The data were obtained from the Institute of Meteorology and Water Management – National Research Institute (IMWM-NRI) in the form of the daily flow series from the period between 01 Nov 1990 and 31 Oct 2020 from 433 gauging cross-sections located within the territory of Poland. The results of the analyses are presented on maps of the physiographic regions of Poland (the Coastlands, the Lakelands, the Lowlands, the Highlands, the Carpathians and the Sudety Mountains). In order to compare SNqm – the unit average minimum monthly flow between the physiographic regions, the Kruskal-Wallis test with the Dunn (Bonferroni) adjustment was performed. In order to evaluate the spatial variability of the SNqm, the hypothesis was verified for each gauging station that the Spearman correlation coefficient between the SNqm and the zero point of the gauge was different from zero. The SNqm flow changed over the year. As expected, the highest values were observed in March and April, and the lowest in July and August. Regardless of the month, the rivers in the central part of Poland (the Lowlands) were less water abundant than those in other regions of the country while the greatest flows were observed in the mountain rivers. Statistically, no difference was observed between the SNqm in the Coastlands, the Carpathians and the Sudety Mts., and in nearly all of the months between the SNqm in the Lakelands and the Lowlands. In the whole territory of Poland, the river flow was dependent on the altitude of the catchment, while the strongest correlation was observed in the mountain regions.
PL
Celem pracy jest ocena przestrzennego zróżnicowania średniego minimalnego rocznego przepływu SNQ, a także przepływu SNQm (m = 1, 2, …12) w poszczególnych miesiącach w Polsce. W pracy wykorzystano pozyskane z IMGW‑PIB ciągi dobowych przepływów z okresu od 1.11.1990 do 31.10.2020 roku w 433 przekrojach wodowskazowych zlokalizowanych na obszarze Polski. Wyniki analiz przedstawiono na mapach na tle regionów fizycznogeograficznych (pobrzeża, pojezierza, niziny, wyżyny, Karpaty i Sudety). Do porównania średnich SNqm w każdym miesiącu, między regionami fizycznogeograficznymi wykorzystano test Kruskala-Wallisa z poprawką Dunna (Bonferroniego), a do oceny siły zróżnicowania przestrzennego przepływów SNqm określono współczynnik korelacji Spearmana między SNqm a wysokością położenia zera wodowskazu, a także zweryfikowano hipotezę o istotności tego współczynnika. W ciągu roku przepływ SNqm zmienia się; spodziewanie największe wartości obserwuje się w marcu i kwietniu, a najniższe w lipcu i sierpniu. Zdecydowanie najmniej zasobne w wodę są, niezależnie od miesiąca, rzeki środkowej i nizinnej części Polski, a największe przepływy obserwuje się w rzekach górskich. Nie obserwuje się statystycznej różnicy między SNqm na pobrzeżach, w Karpatach oraz Sudetach i w prawie wszystkich miesiącach między pojezierzami i nizinami. Na obszarze Polski przepływ zależy od wysokości położenia zlewni, przy czym najsilniejsza zależność występuje w obszarach górskich.
Rocznik
Tom
Strony
7--20
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
  • PK Cracow University of Technology, Faculty of Environmental and Energy Engineering, Department of Geoengineering and Water Management, Poland
  • PK Cracow University of Technology, Faculty of Environmental and Energy Engineering, Department of Geoengineering and Water Management, Poland
  • University of Agriculture in Kraków, Faculty of Environmental Engineering and Land Surveying, Department of Applied Mathematics
Bibliografia
  • 1. Ozga-Zieliński, B.; Walczykiewicz T. Metody obliczania przepływu średniego niskiego SNQ. Seria Publikacji Naukowo-Badawczych IMGW-PIB, Monografia, Warszawa, 2022 (in Polish).
  • 2. Prawo Wodne (Ustawa z dnia 20 lipca 2017 r., Dz. U. 2017, poz. 1566) – Polish Water Law (Act of 20 July 2017, Journal of Laws of 2017, item 1566).
  • 3. Zielińska, M.; Statistical methods of working out low flows. Geophysical Review, 1963, VIII (XVI), 1–2, pp. 75–87.
  • 4. Ozga-Zielińska, M.; Brzeziński J. Applied hydrology. PWN, Wyd. 2, Warszawa, 1997.
  • 5. Smakhtin, V. U. Low flow hydrology: a review. J. Hydrol., 240, 2001, pp. 147–186.
  • 6. Tallaksen, L.M.; van Lanen, H.A.J. Hydrological Drought – Processes and Estimation Methods for Streamflow and Groundwater. Developments in Water Sciences 48. Elsevier B.V., 2004, pp. 580.
  • 7. Stachý, J.; Biernat, B.; Dobrzyńska, I. Odpływ rzek polskich w latach 1951–1970. IMGW, Warszawa, 1979 (in Polish).
  • 8. Stachý J.; Fal, B.; Orsztynowicz, J. Odpływ rzeczny. [in:] Stachý J. (eds.) Atlas hydrologiczny Polski. IMGW, tom 2, Wydawnictwa Geologiczne, Warszawa, 1986, pp. 229–521 (in Polish).
  • 9. Farat, R.; Kępinska-Kasprzak, M.; Kowalczak, P.; Mager, P. Droughts in Poland, 1951–90. Drought Network News (1994–2001), 1998, pp. 42.
  • 10. Mager, P.; Kuźnicka, M.; Kępińska-Kasprzak, M.; Farat, R. Changes in the intensity and frequency of occurrence of droughts in Poland (1891–1995). Geographia Polonica, 73, 2. Autumn 2000 Pl, 2000, pp. 41–48.
  • 11. Bartnik, A. Low flow in Poland. Acta Geographica Lodziensia nr 91, Łódzkie Towarzystwo Naukowe, 2005.
  • 12. Bartczak, A. Long-term variability of the river outflow from Zgłowiączka basin. Polska Akademia Nauk, Geographical Studies, 2007, pp. 209.
  • 13. Fal, B. Niżówki na górnej i środkowej Wiśle. Gospodarka Wodna, 2, 2007, pp. 72–81 (in Polish).
  • 14. Kaznowska, E.; Banasik, K. Intensity of streamflow droughts in small agricultural catchment of Mazowiecka Lowland in last 45 years. Acta Scientiarum Polonorum, Formatio Circumiectus 8 (3–4), 2009, pp. 5–16.
  • 15. Kubiak-Wójcicka, K.; The characteristics of low water levels on the Vistula River in Toruń. [in:] Marszelewski W. (eds.) Water management in a changing environment. Monografie Komisji Hydrologicznej Polskiego Towarzystwa Geograficznego, Nicolaus Copernicus University in Toruń, 2012, pp. 85–93.
  • 16. Zielińska, M.; Statistical methods of working out lows – I. Przegląd Geofizyczny, VIII (XVI), 1–2, 1963, pp. 75–87.
  • 17. Stachý, J.; Biernat, B.; Bondarczuk, Z.; Czarnecka, H.; Dobrzyńska, H.; Fal, B. Zasady obliczania przepływów średnich niskich rzek polskich. IMGW Warszawa, 1991 (in Polish).
  • 18. Wałęga, A.; Młyński, D.; Kokoszka, R. Verification of selected empirical methods for the calculation of minimum and mean flows in catchments of the Dunajec basin. Infrastructure and Ecology of Rural Areas, II/3/2014, 2014.
  • 19. Wałęga, A.; Młyński, D. Assesment of Seasonal Occurrence of Minimum Flow for Mountain River by Colwell Indicies, Infrastructure and Ecology of Rural Areas, II/2/2016, 2016.
  • 20. Banasik, K.; Kaznowska, E.; Letkiewicz, B.; Wasilewicz, M. Analysis of selected hydrological characteristics of two small lowland catchments, Acta Scientiarum Polnorum Formation Circumiectus 21 (1), 2022, pp. 33–47.
  • 21. Kostrzewa, H. Weryfikacja kryteriów i wielkości przepływu nienaruszalnego dla rzek. Mat. Bad. IMGW, Gospodarka wodna i ochrona wód, 1977 (in Polish).
  • 22. Witowski, K.; Filipkowski, A.; Gromiec, M.J. Obliczanie przepływu nienaruszalnego – poradnik. Warszawa: IMGW, 2008 (in Polish).
  • 23. Gręplowska, Z.; Stochliński, T. Minimum acceptable flow. Part I, Rudiments. Technical Transactions. 15-Ś, 2004, pp. 59–96.
  • 24. Młostek, E.; Malicka, J. Próba zastosowania i ocena określenia przepływu nienaruszalnego w oparciu o metodykę zastosowaną na Nysie Łużyckiej do rzeki Kaczawy o odmiennych warunkach hydrologicznych i zagospodarowania (wg kryterium hydrologicznego), IMGW/o. Wrocław, typescript, 1999 (in Polish).
  • 25. Więzik, B. Metody określania przepływu nienaruszalnego – zalety i wady. Stowarzyszenie Hydrologów Polskich, RZGW Seminar in Kraków, 25.11.2013, 2013 (in Polish).
  • 26. European Commission: Ecological flows in the implementation of the Water Framework Directive. CIS guidance document nº 31. Technical Report – 2015 – 086. European Union, 2015.
  • 27. Tharme, R.E. A global perspective on ecological flow assessment: emerging trends in the development and application of ecological flow methodologies for rivers. River Research and Applications, 19(5–6), 2003, pp. 397–441.
  • 28. Acreman, M. Environmental flows – basics for novices. WIREs Water, 3, 2016, pp. 622–628, https://doi.org/10.1002/wat2.1160.
  • 29. King, J.; Brown, C. Environmental flows: strikingthe balance between development and resource pro-tection.Ecology and Society,11, 2006, pp. 26.
  • 30. Armas-Vargas, F.; Escolero, O.; García de Jalón, D.; Zambrano, L.; González del Tánago, M.; Kralisch, S. Proposing environmental flows based on physical habitat simulation for five fish species in the Lower Duero River Basin, Mexico. Hidrobiológica Ago, Volume 27, 2, 2017, pp. 185–200.
  • 31. MGGP. Materiały Konferencji, Wdrożenie metody szacowania przepływów środowiskowych w Polsce, 21.03.2018, Warszawa, 2018 (in Polish).
  • 32. KZGW.: Wdrożenie metody szacowania przepływów środowiskowych w Polsce. Weryfikacja i kalibracja metody szacowania przepływów środowiskowych – metodyka i część terenowa. Zad. 1.1.3 Metodyka weryfikacji i kalibracji metody szacowania przepływów środowiskowych, Krajowy Zarząd Gospodarki Wodnej, 2017 (in Polish).
  • 33. Ziemońska, Z. Hydrographic conditions in the Polish Western Carpathians. Geographical Studies No 103, PAN, Institute of Geography, 1973.
  • 34. Tomaszewski, E. Multiannual and seasonal dynamics of low flows in rivers of central Poland. Wydawnictwo Uniwersytetu Łódzkiego, 2012 (in Polish).
  • 35. Baran-Gurgul, K. The spatial and temporal variability of hydrological drought in the Polish Carpathians. Journal of Hydrology and Hydromechanics, 70, 2, 2022, pp. 156–169, https://doi.org/10.2478/johh-2022-0007.
  • 36. Solon, J.; Borzyszkowski, J.; Bidłasik, M.; Richling, A.; Badora, K.; Balon, J.; Brzezińska-Wójcik, T.; Chabudziński, Ł.; Dobrowolski, R.; Grzegorczyk, I.; Jodłowski, M.; Kistowski, M.; Kot, R.; Krąż, P.; Lechnio, J.; Macias, A.; Majchrowska, A.; Malinowska, E.; Migoń, P.; Myga-Piątek, U.; Nita, J.; Papińska, E.; Rodzik, J.; Strzyż, M.; Terpiłowski, S.; Ziaja W. Physico-geographical mesoregions of Poland: verification and adjustment of boundaries on the basis of contemporary spatial data. Geogr. Pol., 91, 2, 2018, pp. 143–170.
  • 37. Dunn, O. J. Multiple comparisons using rank sums. Technometrics, 6(3), 1964, pp. 241–252.
  • 38. NIST/SEMATECH e-Handbook of Statistical Methods (online), https://www.itl.nist.gov/div898/handbook (accessed on 9 March 2023).
  • 39. R Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Austria, http://www.R-project.org/, 2023), (accessed on 9 March 2023).
  • 40. Bartnik, A. The spatial distribution of low flows in Poland not exceeded at an assumed probability, Geographia Polonica 83(1), 2011. https://doi.org/10.7163/GPol.2010.1.4.
  • 41. Pyrce, R.S. Hydrological Low Flow Indices and their Uses. WSC Report No. 04. Watershed Science Centre, Peterborough, Ontario, 2004.
  • 42. Fleig, A. Hydrological Drought – A comparative study using daily discharge series from around the world. MSc thesis (Diplomarbeit), Institut für Hydrologie, Albert-Ludwigs-Universität Freiburg, Germany, 2004.
  • 43. Vladimirov, A.M. Stok rek v malovodiy period goda. Gidrometeoizdat, Leningrad, 1976.
  • 44. Barbarossa, V.; Huijbregts, M.; Beusen, A.; Beck, H.E.; King, H.; Schipper, A.M. FLO1K, global maps of mean, maximum and minimum annual streamflow at 1 km resolution from 1960 through 2015. Sci Data 5, 180052, 2018, https://doi.org/10.1038/sdata.2018.52.
  • 45. Linke, S.; Lehner, B.; Ouellet Dallaire, C. Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution. Sci Data 6, 283, 2019. https://doi.org/10.1038/s41597-019-0300-6.
  • 46. Beck, H.E.; van Dijk, A.I.J.M.; Miralles, D.G.; Richard, A.M.; de Jeu, L.A.; Bruijnzeel, S.; Mcvicar , T.R.; Schellekens, J. Global patterns in base flow index and recession based on streamflow observations from 3394 catchments. Water Resour. Res. 49, 2013, pp. 43–63.
  • 47. Raczyński, K.; Dyer, J. Variability of Annual and Monthly Streamflow Droughts over the Southeastern United States. Water 14, 23: 3848, 2022. https://doi.org/10.3390/w14233848.
  • 48. Baran-Gurgul, K.; Kołodziejczyk, K.; Rutkowska, A. Temporal and spatial variability of the mean river flow in Poland, regional approach [in:] Więzik B. (eds.) Współczesne problemy gospodarowania zasobami wodnymi: IV Krajowy Kongres Hydrologiczny, 21–23.09.2022, Warszawa, Komitet Gospodarki Wodnej Polskiej Akademii Nauk, Monografie Komitetu Gospodarki Wodnej PAN, 45, 2022, pp. 5–18 (in Polish).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b8f14ba-573d-41d1-9734-f06a96bbdc8e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.