PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Konstruowanie krzywych genusu 2 z danym stopniem zanurzeniowym

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Constructing pairing-friendly genus 2 curves
Języki publikacji
PL
Abstrakty
PL
W kryptografii opartej na iloczynach dwuliniowych stosuje się specjalne krzywe, dla których iloczyny dwuliniowe Weila i Tate można efektywnie obliczyć. Takie krzywe, zwykle nazywane pairing-friendly, mają mały stopień zanurzeniowy i wymagają specjalnej konstrukcji. W praktyce stosuje się głównie krzywe eliptyczne i hipereliptyczne genusu 2. Konstrukcje takich krzywych opierają się na metodzie mnożeń zespolonych (CM metodzie) i stąd ograniczają się do krzywych, których pierścień endomorfizmów jakobianu jest generowany przez odpowiednio małe liczby. Aby skonstruować krzywą najpierw wyznacza się parametry jej jakobianu, które zwykle są dane przez liczby Weila dla krzywych genusu 2, a następnie stosuje się CM metodę, aby znaleźć równanie krzywej. Freeman, Scott i Teske zebrali i opisali w ujednolicony sposób metody konstruowania krzywych eliptycznych z danym stopniem zanurzeniowym. Istnieje kilka różnych podejść do konstruowania krzywych genusu 2, z których pierwsze podali Freeman, Stevenhagen i Streng, Kawazoe-Takahashi i Freeman-Satoh. W tym opracowaniu opisujemy podejście oparte na idei autora, w którym wykorzystujemy odpowiednie wielomiany wielu zmiennych, aby jako ich wartości otrzymywać liczby Weila odpowiadające jakobianom krzywych genusu 2 z danym stopniem zanurzeniowym. Takie podejście pozwala konstruować zarówno krzywe genusu 2 o jakobianie absolutnie prostym oraz prostym, ale nie absolutnie prostym. Podajemy bezpośrednie wzory, które wyznaczają rodziny parametryczne krzywych genusu 2 z danym stopniem zanurzeniowym.
EN
For applications in pairing-based cryptography we need special curves for which the Weil and Tate pairings can be efficiently computed. Such curves, commonly called pairing-friendly, require specific constructions. In practice we mainly use elliptic curves or hyperelliptic curves of genus 2. Methods for constructing pairing-friendly curves are based on the complex multiplication (CM) method, and thus are restricted to curves whose endomorphism ring of the Jacobian is generated by suitably small numbers. To construct such a curve one first determines parameters of its Jacobian, which are usually given by Weil numbers for genus 2 curves, and then one uses the CM method to find a curve equation. Methods for constructing pairing-friendly elliptic curves were gathered and described in a coherent language by Freeman, Scott and Teske. There are several approaches to construct pairing-friendly genus 2 curves the first of which were developed by Freeman, Stevenhagen, and Streng, Kawazoe-Takahashi, and Freeman-Satoh. In this paper we describe an approach based on the idea of the author, where we use suitable polynomials of several variables to obtain as their values Weil numbers corresponding to Jacobians of pairing-friendly genus 2 curves. This approach can be used to construct both genus 2 with absolutely simple Jacobian, and with simple, but not absolutely simple. We give explicit formulas, which determine parametric families of pairing-friendly genus 2 curves.
Rocznik
Strony
95--124
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
autor
  • Szkoła Główna Handlowa, Aleja Niepodległości 162, 02-554 Warszawa
  • Instytut Matematyczny PAN, ul. Śniadeckich 8, 00-950 Warszawa
Bibliografia
  • [1] P.S.L.M. Barreto, M. Naehrig, Pairing-friendly elliptic curves of prime order, in Selected Areas in Cryptography–SAC 2005, Lecture Notes in Computer Science, vol. 3897 (Springer, Berlin, 2006), pp. 319–331.
  • [2] P. Bateman, R. Horn, A heuristic asymptotic formula concerning the distribution of prime numbers, Math. Comput. 16, 363–367 (1962).
  • [3] J. Belding, R. Bröker, A. Enge, K. Lauter, Computing Hilbert class polynomials, Algorithmic Number Theory Symposium-ANTS VIII (A. J. van der Poorten and A. Stein, eds.), Lecture Notes in Computer Science, vol. 5011, Springer, 2008, pp. 282–295.
  • [4] D. Boneh, M. Franklin, Identity-based encryption from the Weil pairing, In Advances in Cryptology Crypto 2001. LNCS, vol. 2139, pp. 213–229. Springer, Berlin (2001). Full version: SIAM J. Comput. 32(3), 586–615 (2003).
  • [5] D. Boneh, B. Lynn, H. Shacham, Short signatures from the Weil pairing, In Advances in Cryptology Asiacrypt 2001, LNCS, vol. 2248, pp. 514–532. Springer, Berlin (2002). Full version: J. Cryptol. 17, 297–319 (2004).
  • [6] F. Brezing, A. Weng, Elliptic curves suitable for pairing based cryptography, Des. Codes Cryptogr. 37, 133–141 (2005).
  • [7] R. Bröker, A p-adic algorithm to compute the Hilbert class polynomial, Math. Comp. 77 (2008), 2417–2435.
  • [8] R. Bröker, P. Stevenhagen, Efficient CM-constructions of elliptic curves over finite fields, Math. Comp. 76 (2007), 2161–2179.
  • [9] D. Cox, Primes of the form x2 + ny2. Fermat, Class Field Theory and Complex Multiplication, John Wiley & Sons (1989).
  • [10] R. Dryło, A New Method for Constructing Pairing-Friendly Abelian Surfaces, In: Pairing-Based Cryptography – Pairing 2010. LNCS, vol. 6487, pp. 298-311. Springer, Heidelberg (2010).
  • [11] R. Dryło, Constructing Pairing-Friendly Genus 2 Curves with Split Jacobian, Lecture Notes in Computer Sciences (INDOCRYPT 2012) 7668 (2012), 437-458.
  • [12] R. Dryło, Z. Jelonek, Krzywe eliptyczne z zadaną grupą endomorfizmów i podgrupą ustalonego rzędu, Materiały z konferencji „Kryptografia i Bezpieczeństwo Informacji”, Warszawa 2014.
  • [13] A. Enge, The complexity of class polynomial computation via floating point approximations, Math. Comp. 78 (2009), 1089–1107.
  • [14] K. Eisentrager, K. Lauter, A CRT algorithm for constructing genus 2 curves over finite fields, in Proceedings of AGCT 2005: Arithmetics, Geometry, and Coding Theory – Société Mathématique de France, 2011.
  • [15] D. Freeman, Constructing pairing-friendly elliptic curves with embedding degree 10, in Algorithmic Number Theory Symposium–ANTS-VII. Lecture Notes in Computer Science, vol. 4076 (Springer, Berlin, 2006), pp. 452–465.
  • [16] D. Freeman, Constructing pairing-friendly genus 2 curves with ordinary Jacobians, In Pairing-Based Cryptography – Pairing 2007, LNCS, vol. 4575, pp. 152–176. Springer, Verlag (2007).
  • [17] D. Freeman, A generalized Brezing-Weng algorithm for constructing pairing-friendly ordinary abelian varieties, In: Pairing-Based Cryptography – Pairing 2008, LNCS, vol. 5209, pp. 46–163, Springer, Heidelberg (2008).
  • [18] D. Freeman, T. Satoh, Constructing pairing-friendly hyperelliptic curves using Weil restriction, J. Number Theory 131, 959–983 (2011).
  • [19] D. Freeman, M. Scott, E. Teske, A taxonomy of pairing-friendly elliptic curves, J. Cryptol. 23, 224–280 (2010).
  • [20] D. Freeman, P. Stevenhagen, M. Streng, Abelian varieties with prescribed embedding degree, In: Algorithmic Number Theory – ANTS VIII. LNCS, vol. 5011, pp. 60–73, Springer, Heidelberg (2008).
  • [21] S. Galbraith, Supersingular curves in cryptography, In ASIACRYPT 2001, LNCS, 2248, pp. 495–513. Springer, Berlin (2001).
  • [22] S. Galbraith, F. Hess, F. Vercauteren, Hyperelliptic pairings, In Pairing-based cryptography – Pairing 2007, LNCS vol. 4575 108–131. Springer, Berlin, (2007).
  • [23] E. Howe, H. Zhu, On the existence of absolutely simple abelian varieties of a given dimension over an arbitrary field, J. Number Theory 92, 139–163 (2002).
  • [24] J. Igusa, Arithmetic Variety of Moduli for Genus Two, Ann. Math. 72, 612–649 (1960).
  • [25] A. Joux, A one round protocol for tripartite Diffie-Hellman, In Algorithmic Number Theory Symposium – ANTS-IV. LNCS, vol. 1838, pp. 385–393, Springer, Berlin (2000), Full version: J. Cryptol. 17, 263–276 (2004).
  • [26] E. Kachisa, E. Schaefer, M. Scott, Constructing Brezing-Weng pairing friendly elliptic curves using elements in the cyclotomic field, In Pairing-Based Cryptography–Pairing 2008, LNCS, vol. 5209, pp. 126–135. Springer, Heidelberg (2008).
  • [27] M. Kawazoe, T. Takahashi, Pairing-friendly ordinary hyperelliptic curves with ordinary Jacobians of type y2 = x5+ax, In: Pairing-Based Cryptography – Pairing 2008. LNCS, vol. 5209, pp. 164–177. Springer, Heidelberg (2008).
  • [28] S. Lang, Elliptic functions, Springer, 1987.
  • [29] A. Menezes, T. Okamoto, S. Vanstone, Reducing elliptic curve logarithms to logarithms in a finite field, IEEE Trans. Inf. Theory 39, 1639–1646 (1993).
  • [30] J.F. Mestre, Construction de courbes de genre 2 à partir de leurs modules, In Effective methods in algebraic geometry (Castiglioncello, 1990), pages 313–334. Birkhäuser, Boston, MA (1991).
  • [31] V.S. Miller, The Weil pairing, and its efficient calculation, Journal of Cryptology, 17, 235–261, 2004.
  • [32] J.S. Milne, Abelian varieties, In G. Cornell, J. Silverman, (eds.) Arithmetic Geometry 103–150. Springer, New York (1986).
  • [33] J.S. Milne, Complex multiplication http://www.jmilne.org/math/CourseNotes/
  • [34] A. Miyaji, M. Nakabayashi, S. Takano, New explicit conditions of elliptic curve traces for FR-reduction, IEICE Trans. Fundam. E84-A(5), 1234–1243 (2001).
  • [35] D. Mumford, Abelian varieties, Oxford University Press 1970.
  • [36] F. Oort, Abelian varieties over finite fields. Higher-dimensional varieties over finite fields, Summer school in Göttingen, pp. 66, June 2007.
  • [37] K. Rubin, A. Silverberg, Using abelian varieties to improve pairing-based cryptography, J. Cryptol. 22, 330-364 (2009).
  • [38] G. Shimura, Abelian Varieties with Complex Multiplication and Modular Functions, Princeton University Press, 1998.
  • [39] J. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Mathematics 151. Springer-Verlag, New York (1994).
  • [40] M. Streng, Complex multiplication of abelian surfaces, PhD thesis, Universiteit Leiden (2010).
  • [41] M. Streng, Computing Igusa Class Polynomials Mathematics of Computation, Vol. 83, pp 275–309, (2014).
  • [42] A. Sutherland, Computing Hilbert class polynomials with the Chinese remainder theorem, Math. Comp. 80, 501–538 (2011).
  • [43] J. Tate, Classes d’isogénie des variétés abéliennes sur un corps fini, (déprés T. Honda.) Séminarie Bourbaki 1968/69, exposé 352, Lect. Notes in Math., vol. 179, pp. 95–110. Springer (1971).
  • [44] J. Tate, Endomorphisms of abelian varieties over finite fields, Inventiones Mathematicae 2 (1966).
  • [45] W.C. Waterhouse, J.S. Milne, Abelian varieties over finite fields, Proc. Symp. Pure Math. 20, 53–64 (1971).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b8a9d7a-4517-49e6-8622-98dc9a8bd194
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.