PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Estimation of maintenance costs of a pipeline for a U-shaped hazard rate function in the imprecise setting

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Estymacja kosztów eksploatacyjnych rurociągu dla U-kształtnej funkcji intensywności uszkodzeń przy nieprecyzyjnym podejściu
Języki publikacji
EN
Abstrakty
EN
In this paper, we discuss imprecise settings for an evaluation of the maintenance costs of a water distribution system (WDS). Moments of failures of pipes are modelled using a newly proposed three-piece convex hazard rate function (HRF) for which number of previous failures is taken into account, too. Both fuzzy sets and shadowed sets are used to model the impreciseness of important parameters of this HRF and the costs of maintenance services. Contrary to more classical and widely-used approaches to cost analysis (i.e. a constant yield or nominal value of money), a strictly stochastic process (i.e. the one-factor Vasicek model) of an interest rate is assumed in the analysis of maintenance costs. This approach models future behaviour of the interest rate (i.e. the future value of money) in a more realistic way. Respective algorithms together with exemplary results of numerical simulations for two setups, which are related to fuzzy and shadowed sets, are also provided.
PL
W niniejszym artykule omawiamy nieprecyzyjne podejścia do problemu obliczenia kosztów eksploatacji systemu dystrybucji wody (WDS). Czasy uszkodzeń rur modelowane są z wykorzystaniem nowo zaproponowanej trzyczęściowej wypukłej funkcji intensywności uszkodzeń (hazard rate function, HRF) dla której brana jest pod uwagę również liczba wcześniejszych uszkodzeń. Do modelowania nieprecyzyjności istotnych parametrów tej HRF oraz kosztów działań serwisowych są wykorzystywane zarówno zbiory rozmyte jak i zbiory cieniowane. W przeciwieństwie do bardziej klasycznych i szeroko wykorzystywanych podejść do analizy kosztów eksploatacji (tzn. stałej stopy procentowej lub wartości nominalnej pieniądza), założono ściśle stochastyczny proces (tzn. jednoczynnikowy model Vasicka) dla stopy procentowej. Podejście to modeluje przyszłe zachowanie stopy procentowej (czyli przyszłej wartości pieniądza) w bardziej realistyczny sposób. Zaprezentowano również odpowiednie algorytmy wraz z przykładowymi wynikami symulacji numerycznych dla dwóch zestawów parametrów, związanych ze zbiorami rozmytymi i cieniowanymi.
Rocznik
Strony
352--362
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Systems Research Institute Polish Academy of Sciences ul. Newelska 6, 01-447 Warszawa, Poland Warsaw School of Information Technology, ul. Newelska 6, 01-447 Warsaw, Poland
  • Systems Research Institute Polish Academy of Sciences ul. Newelska 6, 01-447 Warszawa, Poland
Bibliografia
  • 1. Amani N, Ali N M, Mohammed A H, Samat R A. Maintenance and management of wastewater system components using the condition index system, prediction process and costs estimation. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2013; 15(2): 161-168.
  • 2. Blokus A, Kołowrocki K. Reliability and maintenance strategy for systems with aging-dependent components. Quality and Reliability Engineering International 2019, https://doi.org/10.1002/qre.2552.
  • 3. Dąbrowska E, Soszyńska-Budny J. Monte Carlo Simulation Forecasting of Maritime Ferry Safety and Resilience, 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Bangkok 2018, 376-380, https://doi.org/10.1109/IEEM.2018.8607464.
  • 4. Fadaee M J, Tabatabaei R. Estimation of failure probability in water pipes network using statistical model. Engineering Failure Analysis 2011; 18: 1184-1192, https://doi.org/10.1016/j.engfailanal.2011.02.013.
  • 5. Farmani R, Kakoudakis K, Behzadian K, Butler D. Pipe Failure Prediction in Water Distribution Systems Considering Static and Dynamic Factors. Procedia Engineering 2017, 186: 117-126, https://doi.org/10.1016/j.proeng.2017.03.217.
  • 6. Folkman S. Water Main Break Rates In the USA and Canada: A Comprehensive Study. Utah State University 2018.
  • 7. Gil M A, Hryniewicz O. Statistics with Imprecise Data. In: Meyers R A (ed.). Encyclopedia of Complexity and Systems Science. New York: Springer-Verlag, 2009.
  • 8. Glasserman P. Monte Carlo Methods in Financial Engineering. New York: Springer, 2004, https://doi.org/10.1007/978-0-387-21617-1.
  • 9. Grzegorzewski P. Trapezoidal approximation of fuzzy numbers based on sample data. In: Hüllermeier E, Kruse R, Hoffmann F (eds.). Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications. Springer Berlin Heidelberg 2010: 402-411, https://doi.org/10.1007/978-3-642-14058-7_42.
  • 10. Grzegorzewski P. Fuzzy number approximation via shadowed sets. Information Sciences 2013; 225: 35-46, https://doi.org/10.1016/j.ins.2012.10.028.
  • 11. Hryniewicz O, Kaczmarek K, Nowak P. Bayes statistical decisions with random fuzzy data - An application for the Weibull distribution. Eksploatacja i Niezawodnosc - Maintenance and Reliability. 2015; 17(4): 610-616. https://doi.org/10.17531/ein.2015.4.18
  • 12. Kleiner Y, Adams B J, Rogers J S. Long-term planning methodology for water distribution system rehabilitation. Water Resources Research 1998; 34(8): 2039-2051, https://doi.org/10.1029/98WR00377.
  • 13. Kumar G, Jain V, Gandhi O P. Steady-state availability analysis of repairable mechanical systems with opportunistic maintenance by using semi-Markov process. Int J Syst Assur Eng Manag. 2014; 5(4): 664-678, https://doi.org/10.1007/s13198-014-0231-8.
  • 14. Lee K H. First Course on Fuzzy Theory and Applications. Berlin Heidelberg: Springer, 2005.
  • 15. Lubiano M A, Salas A, Carleos C, de la Rosa de Sáa S, Gil M Á. Hypothesis testing-based comparative analysis between rating scales for intrinsically imprecise data. International Journal of Approximate Reasoning 2017; 88: 128-147, https://doi.org/10.1016/j.ijar.2017.05.007.
  • 16. Liu Z, Kleiner Y, Rajani B, Wang L, Condit W. Condition Assessment Technologies for Water Transmission and Distribution Systems. Washington DC: U.S. Environmental Protection Agency, 2012; EPA/600/R-12/017.
  • 17. Malinowski J. A newly developed method for computing reliability measures in a water supply network. Operations Research and Decisions 2016; 26(4): 49-64.
  • 18. Marchionni V, Cabrala M, Amadoa C, Covasa D. Water supply infrastructure cost modelling. Procedia Engineering 2015; 119: 168-173, https://doi.org/10.1016/j.proeng.2015.08.868.
  • 19. Neelakantan T R, Suribabu C R, Lingireddy S. Optimisation procedure for pipe-sizing with break-repair and replacement economics. Water SAl 2008; 34(2): 217-224, https://doi.org/10.4314/wsa.v34i2.183642.
  • 20. Nguyen H T. A Note on the Extension Principle for Fuzzy Sets. Journal Mathematical Analysis and Applications 1978; 64: 369-380, https://doi.org/10.1016/0022-247X(78)90045-8.
  • 21. Pedrycz W. Shadowed Sets: Representing and Processing Fuzzy Sets. IEEE Transactions on Systems, Man and Cybernetics- Part B 1998; 28(1): 103-109, https://doi.org/10.1109/3477.658584.
  • 22. Pietrucha-Urbanik K, Studziński A. Case study of failure simulation of pipelines conducted in chosen water supply system. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2017; 19 (3): 317-322, https://doi.org/10.17531/ein.2017.3.1.
  • 23. Rojek I, Studziński J. Comparison of different types of neuronal nets for failures location within water-supply networks. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2014; 16 (1): 42-47.
  • 24. Rojek I, Studziński J. Detection and localization of water leaks in water nets supported by an ICT system with artificial intelligence methods as away forward for smart cities. Sustainability 2019; 11(2), https://doi.org/10.3390/su11020518.
  • 25. Romaniuk M. On simulation of maintenance costs for water distribution system with fuzzy parameters. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2016; 18(4): 514-527, https://doi.org/10.17531/ein.2016.4.6.
  • 26. Romaniuk M. Optimization of maintenance costs of a pipeline for a V-shaped hazard rate of malfunction intensities. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2018; 20(1): 46-54, https://doi.org/10.17531/ein.2018.1.7.
  • 27. Romaniuk M, Hryniewicz O. Discrete and smoothed resampling methods for interval-valued fuzzy numbers. IEEE Transactions on Fuzzy Systems 2020, https://doi.org/10.1109/TFUZZ.2019.2957253.
  • 28. Romaniuk M, Nowak P. Monte Carlo methods: theory, algorithms and applications to selected financial problems. Warszawa: ICS PAS, 2015.
  • 29. Røstum J. Statistical modelling of pipe failures in water networks. Ph.D. dissertation. 2000.
  • 30. Scheidegger A, Leitão J P, Scholten L. Statistical failure models for water distribution pipes - A review from a unified perspective. Water Research 2015; 83: 237-247, https://doi.org/10.1016/j.watres.2015.06.027.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b884366-1455-43e7-a209-649194c3daf4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.