PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of aging on machinability of 15Cr–5Ni precipitation hardened stainless steel

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study is an attempt to correlate the microstructure and mechanical properties of commercial 15Cr–5Ni precipitation-hardening stainless steel in different aging regimes such as solution treated (Condition A), over-aged (Condition H1150-M) and peak-aged (Condition H900) with their machinability behavior. Aging was done on 15Cr–5Ni precipitation-hardenable stainless steel samples in a temperature range of 480–760 °C. Over aging of the above material resulted in an improvement of ductility and a substantial reduction in tensile strength. Heat treated samples were machined in order to study the effects of machining parameters on machinability aspects such as cutting forces, surface roughness, chip morphology and tool wear. Experimental investigation revealed a strong correlation between the rate of cooling after aging and cutting forces. Air cooled samples exhibited higher cutting forces compared to furnace cooled samples. The surface finish is found to be improved for H900 air cooled sample, which has higher hardness than that of as received sample and H1150-M condition.
Rocznik
Strony
53--63
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • Department of Production Engineering, National Institute of Technology, Tiruchirappalli 620 015, India
autor
  • Department of Production Engineering, National Institute of Technology, Tiruchirappalli 620 015, India
  • Department of Production Engineering, National Institute of Technology, Tiruchirappalli 620 015, India
Bibliografia
  • [1] H.R. Habibi Bajguirani, The effect of ageing upon the microstructure and mechanical properties of type 15-5 PH stainless steel, Materials Science and Engineering A 338 (2002) 142–159.
  • [2] A.K. Steel, Product Data Sheet-15-5 PH Stainless Steel, AK Steel Corporation, 2007.
  • [3] A. Kumar, Y. Balaji, N. Eswara Prasad, G. Gouda, K. Tamilmani, Indigenous development and airworthiness certification of 15-5 PH precipitation hardenable stainless steel for aircraft applications, Sadhana 38 (1) (2013) 3–23.
  • [4] A.S.M. Handbook, Volume 4: Heat Treating, ASM International, 1991. p. 1726.
  • [5] A.S.M. Handbook, Volume 16: Machining, ASM International Handbook Committee, ASM International, Electronic, OH, 1989. p. 690.
  • [6] S. Krishna, N.K. Gangwar, A.K. Jha, B. Pant, K.M. George, Microstructure and properties of 15Cr–5Ni–1Mo–1W martensitic stainless steel, Steel Research International 86 (1) (2015) 51–57.
  • [7] E.S. Park, D.K. Yoo, J.H. Sung, C.Y. Kang, J.H. Lee, J.H. Sung, Formation of reversed austenite during tempering of 14Cr– 7Ni–0.3Nb–0.7Mo–0.03C super martensitic stainless steel, Metals and Materials International 10 (6) (2004) 521–525.
  • [8] C.N. Hsiao, C.S. Chiou, J.R. Yang, Aging reactions in a 17-4 PH stainless steel, Materials Chemistry and Physics 74 (2) (2002) 134–142.
  • [9] M. Aghaie-Khafri, A. Zargaran, High temperature tensile behavior of a PH stainless steel, Materials Science and Engineering A 527 (18) (2010) 4727–4732.
  • [10] H.H. Bajguirani, The effect of ageing upon the microstructure and mechanical properties of type 15-5 PH stainless steel, Materials Science and Engineering A 338 (1) (2002) 142–159.
  • [11] J.G. Lima, R.F. Avila, A.M. Abrao, M. Faustino, J. Paulo Davim, Hard turning: AISI 4340 high strength low alloy steel and AISI D2 cold work tool steel, Journal of Materials Processing Technology 169 (3) (2005) 388–395.
  • [12] R. Suresh, S. Basavarajappa, V.N. Gaitonde, G.L. Samuel, Machinability investigations on hardened AISI 4340 steel using coated carbide insert, International Journal of Refractory Metals and Hard Materials 33 (2012) 75–86.
  • [13] R. Suresh, S. Basavarajappa, G.L. Samuel, Some studies on hard turning of AISI 4340 steel using multilayer coated carbide tool, Measurement 45 (7) (2012) 1872–1884.
  • [14] A. Pal, S.K. Choudhury, S. Chinchanikar, Machinability assessment through experimental investigation during hard and soft turning of hardened steel, Procedia Materials Science 6 (2014) 80–91.
  • [15] H. Aouici, M.A. Yallese, K. Chaoui, T. Mabrouki, J.F. Rigal, Analysis of surface roughness and cutting force components in hard turning with CBN tool: prediction model and cutting conditions optimization, Measurement 45 (3) (2012) 344–353.
  • [16] P. Senthil, T. Selvaraj, K. Sivaprasad, Influence of turning parameters on the machinability of homogenized Al–Cu/ TiB2 in-situ metal matrix composites, The International Journal of Advanced Manufacturing Technology 67 (5–8) (2013) 1589–1596.
  • [17] S.R. Das, D. Dhupal, A. Kumar, Experimental investigation into machinability of hardened AISI 4140 steel using TiN coated ceramic tool, Measurement 62 (2015) 108–126.
  • [18] A.I. Fernandez-Abia, J. Barreiro, J. Fernandez-Larrinoa, L.N. Lopez de Lacalle, A. Fernandez Valdivielso, O.M. Pereira, Behaviour of PVD coatings in the turning of austenitic stainless steels, Procedia Engineering 63 (2013) 133–141.
  • [19] M.Y. Noordin, V.C. Venkatesh, S. Sharif, Dry turning of tempered martensitic stainless tool steel using coated cermet and coated carbide tools, Journal of Materials Processing Technology 185 (1) (2007) 83–90.
  • [20] G.S. Fox-Rabinovich, A.I. Kovalev, M.H. Aguirre, B.D. Beake, K. Yamamoto, S.C. Veldhuis, J.L. Endrino, D.L. Wainstein, A.Y. Rashkovskiy, Design, performance of AlTiN and TiAlCrN PVD coatings for machining of hard to cut materials, Surface and Coatings Technology 204 (4) (2009) 489–496.
  • [21] A.S. Kumar, A.R. Durai, T. Sornakumar, The effect of tool wear on tool life of alumina-based ceramic cutting tools while machining hardened martensitic stainless steel, Journal of Materials Processing Technology 173 (2) (2006) 151–156.
  • [22] S. Thamizhmanii, K. Kamarudin, E.A. Rahim, A. Saparudin, S. Hassan, Tool wear and surface roughness in turning AISI 8620 using coated ceramic tool, in: Proceedings of the World Congress on Engineering, Vol. II, 2007.
  • [23] K.N. Strafford, J. Audy, Indirect monitoring of machinability in carbon steels by measurement of cutting forces, Journal of Materials Processing Technology 67 (1) (1997) 150–156.
  • [24] ASTM E8/E8M-13a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2013 www.astm.org.
  • [25] K. Amini, M.R. Hoda, A. Shafyei, Investigation of the effect of heat treatment on the mechanical properties and microstructure of DIN 1.4057 martensitic stainless steel, Metal Science and Heat Treatment 55 (9–10) (2014) 499–503.
  • [26] A. Mondelin, F. Valiorgue, J. Rech, M. Coret, E. Feulvarch, Hybrid model for the prediction of residual stresses induced by 15-5PH steel turning, International Journal of Mechanical Sciences 58 (1) (2012) 69–85.
  • [27] E.M. Trent, P.K. Wright, Metal Cutting, Butterworth- Heinemann, 2000, . p. 218, ISBN: 0-7506-7069-X.
  • [28] J. Paulo Davim, Machining: Fundamentals and Recent Advances, 2008, . p. 51, http://dx.doi.org/10.1007/978-1-84800- 213-5.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b814673-24f3-4839-81b8-2de58199a29f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.