Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A device with a frequency-modulated output signal has been developed to increase the sensitivity and accuracy of measuring moisture content in crude oil and petroleum products in the range of 0~20%. The main element of the device is a self-oscillator transducer based on a transistor structure with negative differential resistance. A capacitive sensor in the form of a capacitive cylindrical structure with cylindrical electrodes was used to determine moisture content in crude oil and petroleum products. Electric permittivity of a two-component mixture of oil and water was estimated and the capacitance of the humidity-sensitive capacitive cylindrical structure with cylindrical electrodes was calculated. An electrical diagram of the device for measuring and controlling the humidity of crude oil and petroleum products has been developed. The relative error of converting the humidity of oil and petroleum products into capacitance which was caused by the change in oil temperature, was determined to be 0.225%. Values of relative errors of the device for measuring the humidity of oil and petroleum products are as follows: 1.355 · 10-5% is caused by instability of the oscillator frequency, 0.01% is caused by fluctuations in the supply voltage of the self-oscillator transducer, 0.05% is caused by a change in ambient temperature by 1°C. For the developed device, which used errors of the first and second type, the reliability of humidity control of oil and petroleum products has been determined to be 0.9591.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
195--208
Opis fizyczny
Bibliogr. 30 poz., rys., wykr., wzory
Twórcy
autor
- Vinnytsia National Technical University, Faculty of Information Electronic Systems, Khmelnytske shose 95, 21-021 Vinnytsia, Ukraine
autor
- Vinnytsia National Technical University, Faculty of Information Electronic Systems, Khmelnytske shose 95, 21-021 Vinnytsia, Ukraine
autor
- Comenius University in Bratislava, Department of Information Systems, Faculty of Management, Šafárikovo námestie 6, 814 99 Bratislava, Slovakia
autor
- Vinnytsia National Technical University, Faculty of Information Electronic Systems, Khmelnytske shose 95, 21-021 Vinnytsia, Ukraine
autor
- National University of Water and Environmental Engineering, Department of Automation, Electrical Engineering and Computer-Integrated Technologies, Soborna St. 11, 33-028 Rivne, Ukraine
Bibliografia
- [1] Shi, X., Tan, C., Dong, F., & Escudero, J. (2022). Flow rate measurement of oil-gas-water wavy flow through a combined electrical and ultrasonic sensor. Chemical Engineering Journal, 427, 131982. https://doi.org/10.1016/j.cej.2021.131982
- [2] Zhang, L., & Liu, C. (2011). Application of PSO-RBFNN to the prediction of moisture content in crude oil of wellheat metering. Proceedings of the 2011 International Conference on Computational and Information Sciences, 571-574. https://doi.org/10.1109/ICCIS.2011.94
- [3] Li, K., Xu, W., Han, Y., Ge, F., & Wang, Y. (2020). Soft sensor for the moisture content of crude oil based on multi-kernel Gaussian process regression optimized by an adaptive variable population fruit fly optimization algorithm. Transactions of the Institute of Measurement and Control, 42(4), 770-785. https://doi.org/10.1177/0142331219878959
- [4] Guowang, G., Dasen, H., Hua, L., Wang, F., & Li, Y. (2021). Research Status and Development Trend of Water Cut Detection Methods for Crude Oil. Journal of Physics: Conference Series, 1894(1), 012093. https://doi.org/10.1088/1742-6596/1894/1/012093
- [5] Xiong, Z. (2018). Simulation, and application of water content determination process of single well crude oil. International Journal of Simulation and Process Modelling, 13(3), 255-263. https://doi.org/10.1504/IJSPM.2018.093115
- [6] Yi, L., Ding, J., & Liu, C. (2019). NMR principle analysis based object detection for intelligent measurement of crude oil moisture content. Proceedings of the 12th Asian Control Conference, 456-461.
- [7] Shengneng, S. (2016). Designing of instruments which detect water content in petroleum products. In N. Qaddoumi, S.-K. Koh, & J. Devlin (Eds.), MATEC Web of Conferences, 39, 03007. https://doi.org/10.1051/matecconf/20163903007
- [8] Tarasov, B. P., & Kopyl’tsova, A. B. (2013). Assuring the precision of determination of water content by means of laboratory and continuous petroleum moisture meters: Status, problems, achievements. Measurement Techniques, 56(3), 344-349. https://doi.org/10.1007/s11018-013-0207-0
- [9] Liu, H., Tang, X., Lu, H., Xie, W., Hu, Y., & Xue, Q. (2020). An interdigitated impedance microsensor for detection of moisture content in engine oil. Nanotechnology and Precision Engineering, 3(2), 75-80. https://doi.org/10.1016/j.npe.2020.04.001
- [10] Gao, D., Xiushui, M., Ye, L., Shen, F., & Qiu, C. (2019). Measurement of crude oil water content based on cross-correlation method. IOP Conference Series: Earth and Environmental Science, 332(2), 022033. https://doi.org/10.1088/1755-1315/332/2/022033
- [11] Ming, L., Cheng, X., Zhang, L., & Dai, K. (2012). Measurement of water content of petroleum by high accuracy interval measuring chip. Proceedings of the 4th International Conference on Computational and Information Sciences, 1171-1174. https://doi.org/10.1109/ICCIS.2012.181
- [12] Shafiai, S. H., & Gohari, A. (2020). Conventional and electrical EOR review: the development trend of ultrasonic application in EOR. Journal of Petroleum Exploration and Production Technology, 10, 2923-2945. https://doi.org/10.1007/s13202-020-00929-x
- [13] Liu, Q., Chu, B., Peng, J., & Tang, S. A. (2019). A Visual Measurement of Water Content of Crude Oil Based on Image Grayscale Accumulated Value Difference. Sensors, 19(13), 2963. https://doi.org/10.3390/s19132963
- [14] Lu, Z. Q., Yang, X., Zhao, K., Wei, J. X., Jin, W. J., Jiang, C., & Zhao, L. J. (2015). Non-contact Measurement of the Water Content in Crude Oil with All-Optical Detection. Energy Fuels, 29(5), 2919-2922. https://doi.org/10.1021/acs.energyfuels.5b00280
- [15] Gimson, C. (1989). Using the capacitance charge transfer principle for water content measurement. Measurement and Control, 22(3), 79-81. https://doi.org/10.1177/002029408902200303
- [16] Marrelli, J. D., Hatton, G. J., Siddiqui, F., Pepin, L. L., & Helms, D. A. (1992). Continuous determination of oil pipeline watercut, salinity, and API gravity regardless of gas fraction. The microwave watercut monitor. Proceedings of the International Meeting on Petroleum Engineering, 16319. https://doi.org/10.2523/22401-ms
- [17] Semenov, A., Baraban, S., Semenova, O., Voznyak, O., Vydmysh, A., & Yaroshenko, L. (2019). Statistical Express Control of the Peak Values of the Differential-Thermal Analysis of Solid Materials. Solid State Phenomena, 291, 28-41. https://doi.org/10.4028/www.scientific.net/ssp.291.28
- [18] Osadchuk, O. V., Semenov, A. O., Zviahin, O. S., Semenova, O. O., & Rudyk, A. V. (2020). Increasing the sensitivity of measurement of a moisture content in crude oil. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 49-53. https://doi.org/10.33271/nvngu/2021-5/049
- [19] Osadchuk, A. V., Semenov, A. A., Zviahin, O. S., Savytskyi, A. Y., Komada, P., & Nurseitova, K. (2019). Numerical method for processing frequency measuring signals from microelectronic sensors based on transistor structures with negative differential resistance. Proceedings of SPIE, 11176, 111765Y. https://doi.org/10.1117/12.2536942
- [20] Semenov, A. O., Baraban, S. V., Osadchuk, O. V., Semenova, O. O., Koval, K. O., & Savytskyi, A. Y. (2019). Microelectronic Pyroelectric Measuring Transducers. 4th International Conference on Nanotechnologies and Biomedical Engineering, 393-397. https://doi.org/10.1007/978-3-030-31866-6_72
- [21] Kucheruk, V., Kulakov, P., & Storozhuk, N. (2016). Measurement of the Number Servings of Milk and Control of Water Content in Milk on Stall Milking Machines. Recent Advances in Systems, Control and Information Technology, 435-447. Springer International Publishing. https://doi.org/10.1007/978-3-319-48923-0_46
- [22] Kucheruk, V., Kulakov, P., Palamarchuk, E., Storozhuk, N., Wojcik, W., Zhassandykyzy, M. (2017). Measuring of the relative milk mass fraction in water-milk solution. In Przegląd Elektrotechniczny (Vol. 1, Issue 3, pp. 85-89). Wydawnictwo SIGMA-NOT, sp. z.o.o. https://doi.org/10.15199/48.2017.03.20
- [23] Oil product moisture meter IVN-3003 version 2.0. (2018). Retrieved from http://intron-set.com.ua/product/izmeritel-vlazhnosti-nefteproduktov-ivn-3003/
- [24] Universal moisture meter FIZEPR-SW100.11. (2022). Retrieved from https://fizepr.com/universal-moisture-meter/specifications
- [25] Red Eye®2G. Installation, Configuration, and Operation Manual. (2008). Retrieved from https://skyeye.ca/wp-content/uploads/2013/11/Red-eye-2G-Manual.pdf
- [26] Model WCM 7300M Temperature Compensated Water Cut Monitor (2018). Retrieved from http://info.smithmeter.com/literature/docs/SSIN016.pdf
- [27] Standalone Water in Hydrocarbon Analyzer. Installation and Instruction Manual. (2006). Retrieved from https://www.skyeye.ca/wp-content/uploads/2013/11/Phase-Dynamice-Installation-and-Instruction-manual1.pdf
- [28] Bogorodickij, N. P., Volokobinskij, Yu. M., Vorob’ev, A. A., & Targev, B. M. (1965). Teoriya dielektrikov. Energiya
- [29] Wójcik, W., Vasilevskyi, O., Kulakov, P., Kompanets, D., Lysenko, O. M., Prysyazhnyuk, V., & Baitussupov, D. (2018). A new approach to assessing the dynamic uncertainty of measuring devices. In R. S. Romaniuk & M. Linczuk (Eds.), Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments, Proc. SPIE, 10808, 108082E. https://doi.org/10.1117/12.2501578
- [30] GOST 2477-2014. Petroleum and petroleum products. Method for determination of water content. (2016). Retrieved from http://vsegost.com/Catalog/60/60022.shtml
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b7c7397-6c96-4e17-a319-24713edf4f0d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.