Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Odkrywanie potencjału: metamateriały auksetyczne jako elementy rdzenia w stężeniach z ograniczonym wyboczeniem
Języki publikacji
Abstrakty
Buckling restrained braces (BRBs) are now widely used in different seismic zones as lateral resisting systems due to their quasi-symmetric and stable cyclic behavior. These systems are capable of dissipating the energy of severe lateral loads while protecting the integrity of other components of the structure. The material selection for these damper components as the inner core element requires high ductility, low strength increase, and high energy dissipation ability. Therefore, designing BRB steel cores using auxetic metamaterials has been recently investigated and suggested in the field of structure protection. The behavior of these metamaterials is characterized by a negative Poisson’s ratio (NPR) and unique mechanical characteristics, including their shear resistance and high ability for energy absorption. In this paper, we seek to investigate the effect of auxetic behavior on the dissipative performance of BRB under cyclic loading. Two different types of BRB were numerically designed and modeled using the finite element program Abaqus. The numerical analysis results show stable hysteresis behavior in both specimens and good stress distribution along the inner auxetic core. In addition, a parametric study was conducted to further investigate the effect of the gap size between the auxetic core and the concrete encasement. The cyclic performance of a buckling restrained brace with an auxetic perforated core was assessed, and the outcomes of this numerical analysis provide a reasonable basis for applying an auxetic core in the field of structure protection.
Stężenia z ograniczonym wyboczeniem (Buckling Restrained Braces BRB) są obecnie szeroko stosowane w różnych strefach sejsmicznych jako boczne systemy nośne ze względu na ich quasisymetryczne i stabilne zachowanie cykliczne. Systemy te są w stanie rozproszyć energię dużych obciążeń poprzecznych, chroniąc jednocześnie integralność innych elementów konstrukcji. Wybór materiału na te elementy tłumika jako element rdzenia wewnętrznego wymaga wysokiej ciągliwości, niskiego wzrostu wytrzymałości i dużej zdolności rozpraszania energii. Dlatego też w ostatnim czasie badano i sugerowano projektowanie rdzeni stalowych BRB z wykorzystaniem metamateriałów auksetycznych w dziedzinie ochrony konstrukcji. Zachowanie tych metamateriałów charakteryzuje się ujemnym współczynnikiem Poissona (negative Poisson’s ratio NPR) i unikalnymi właściwościami mechanicznymi, w tym odpornością na ścinanie i dużą zdolnością do pochłaniania energii. W tym artykule staramy się zbadać wpływ zachowania rdzenia auksetycznego na wydajność rozpraszającą BRB pod obciążeniem cyklicznym. Zaprojektowano numerycznie i zamodelowano dwa różne typy BRB przy użyciu programu elementów skończonych Abaqus.Wyniki analizy numerycznej wskazują na stabilne zachowanie histerezy w obu próbkach i dobry rozkład naprężeń wzdłuż wewnętrznego rdzenia auksetycznego. Ponadto przeprowadzono badanie parametryczne w celu dalszego zbadania wpływu rozmiaru szczeliny pomiędzy rdzeniem auksetycznym a obudową betonową. Oceniono cykliczną wydajność stężenia z ograniczonym wyboczeniem z auksetycznym perforowanym rdzeniem, a wyniki tej analizy numerycznej stanowią uzasadnioną podstawę do zastosowania rdzenia auksetycznego w dziedzinie ochrony konstrukcji.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
325--338
Opis fizyczny
Bibliogr. 55 poz., il., tab.
Twórcy
autor
- EOLE, Department of Civil Engineering, University of Tlemcen, Tlemcen, Algeria
autor
- EOLE, Department of Civil Engineering, University of Tlemcen, Tlemcen, Algeria
autor
- EOLE, Department of Civil Engineering, University of Tlemcen, Tlemcen, Algeria
autor
- Department of Structural Mechanics, Lublin University of Technology, Lublin, Poland
Bibliografia
- [1] K.E. Evans, “Auxetic polymers: a new range of materials”, Endeavour, vol. 15, no. 4, pp. 170-174, 1991, doi: 10.1016/0160-9327(91)90123-S.
- [2] K.E. Evans, M.A. Nkansah, I.J. Hutchinson, and S.C. Rogers, "Molecular network design", Nature, vol. 353, art. no. 124, 1991, doi: 10.1038/353124a0.
- [3] X. Ren, R. Das, P. Tran, T.D. Ngo, and Y.M. Xie, “Auxetic metamaterials and structures: A review”, Smart Materials and Structures, vol. 27, no. 2, 2018, doi: 10.1088/1361-665X/aaa61c.
- [4] W. Wu, P. Liu, and Z. Kang, “A novel mechanical metamaterial with simultaneous stretching- and compression- expanding property”, Materials and Designe, vol. 208, art. no. 109930, 2021, doi: 10.1016/j.matdes.2021.109930.
- [5] N.K. Choudhry, B. Panda, and S. Kumar, "In-plane energy absorption characteristics of a modified re-entrant auxetic structure fabricated via 3D printing”, Composites Part B: Engineering, vol. 228, art. no. 109437, 2022, doi: 10.1016/j.compositesb.2021.109437.
- [6] X.Y. Zhang, X. Ren, X.Y. Wang, Y. Zhang, and Y.M. Xie, “A novel combined auxetic tubular structure with enhanced tunable stiffness”, Composites Part B: Engineering, vol. 226, 2021, doi: 10.1016/j.compositesb.2021.109303.
- [7] R. Critchley, I. Corni, J.A. Wharton, F.C. Walsh, R.J.K. Wood, and K.R.nStokes, “A review of the manufacture, mechanical properties and potential applications of auxetic foams”, Physica Status Solidi B, vol. 250, no. 10, pp. 1963-1982, 2013, doi: 10.1002/pssb.201248550.
- [8] G. Imbalzano, S. Linforth, T.D. Ngo, P.V.S. Lee, and P. Tran, “Blast resistance of auxetic and honeycomb sandwich panels: Comparisons and parametric designs”, Composite Structures, vol. 183, no. 1, pp. 242-261, 2018, doi: 10.1016/j.compstruct.2017.03.018.
- [9] F. Scarpa, J.A. Giacomin, A. Bezazi, and W.A. Bullough, “Dynamic behavior and damping capacity of auxetic foam pads”, Smart Structures and Materials 2006: Damping and Isolation. Proceedings SPIE, vol. 6169, art. no. 61690T, 2006, doi: 10.1117/12.658453.
- [10] Y. Zhang, et al., “Static and dynamic properties of a perforated metallic auxetic metamaterial with tunable stiffness and energy absorption”, International Journal of Impact Engineering, vol. 164, 2022, doi: 10.1016/j.ijimpeng.2022.104193.
- [11] J. Li, Z.Y. Zhang, H.T. Liu, and Y.B. Wang, “Design and characterization of novel bi-directional auxetic cubic and cylindrical metamaterials”, Composite Structures, vol. 299, art. no. 116015, 2022, doi: 10.1016/j.compstruct.2022.116015.
- [12] C. Lira, F. Scarpa, and R. Rajasekaran, “A gradient cellular core for aeroengine fan blades based on auxetic configurations”, Journal of Intelligent Material Systems and Structures, vol. 22, no. 9, pp. 907-917, 2011, doi: 10.1177/1045389X11414226.
- [13] Z. Wang and H. Hu, “Auxetic materials and their potential applications in textiles”, Textile Research Journal, vol. 84, no. 15, pp. 1600-1611, 2014, doi: 10.1177/0040517512449051.
- [14] R.P. Bohara, S. Linforth, T. Nguyen, A. Ghazlan, and T. Ngo, “Dual-mechanism auxetic-core protective sandwich structure under blast loading”, Composite Structures, vol. 299, 2022, doi: 10.1016/j.compstruct.2022.116088.
- [15] J. Smardzewski, D. Jasińska, and M. Janus-Michalska, “Structure and properties of composite seat with auxetic springs”, Composite Structures, vol. 113, no. 1, pp. 354-361, 2014, doi: 10.1016/j.compstruct.2014.03.041.
- [16] R. Galea, P.S. Farrugia, K.K. Dudek, D. Attard, J.N. Grima, and R. Gatt, “A novel design method to produce 3D auxetic metamaterials with continuous pores exemplified through 3D rotating auxetic systems”, Materials and Design, vol. 226, art. no. 111596, 2023, doi: 10.1016/j.matdes.2023.111596.
- [17] D. Han, et al., “Lightweight auxetic metamaterials: Design and characteristic study”, Composite Structures, vol. 293, 2022, doi: 10.1016/j.compstruct.2022.115706.
- [18] S.Z. Khan, S.H. Masood, and R. Cottam, “Mechanical properties in tensile loading of H13 re-entrant honeycomb auxetic structure manufactured by direct metal deposition”, MATEC Web of Conferences, vol. 34, pp. 1-4, 2015, doi: 10.1051/matecconf/20153401004.
- [19] A. Alomarah, J. Zhang, D. Ruan, S. Masood, and G. Lu, “Mechanical Properties of the 2D Re-entrant Honeycomb Made via Direct Metal Printing”, IOP Conference Series: Materials Science and Engineering, vol. 229, 2017, doi: 10.1088/1757-899X/229/1/012038.
- [20] S. Brűlé, S. Enoch, and S. Guenneau, “Emergence of seismic metamaterials: Current state and future perspectives”, Physics Letters A, vol. 384, no. 1, art. no. 126034, 2020, doi: 10.1016/j.physleta.2019.126034.
- [21] D. Xiao, Z. Dong, Y. Li, W. Wu, and D. Fang, “Compression behavior of the graded metallic auxetic reentrant honeycomb: Experiment and finite element analysis”, Materials Science and Engineering: A, vol. 758, pp. 163-171, 2019, doi: 10.1016/j.msea.2019.04.116.
- [22] F. Mustahsan, S.Z. Khan, A.A. Zaidi, Y.H. Alahmadi, E.R.I. Mahmoud, and H. Almohamadi, “Re-Entrant Honeycomb Auxetic Structure with Enhanced Directional Properties”, Materials (Basel), vol. 15, no. 22, 2022, doi: 10.3390/ma15228022.
- [23] C. Qi, et al., “Quasi-static crushing behavior of novel re-entrantmcircular auxetic honeycombs”, Composites Part B: Engineering, vol. 197, art. no. 108117, 2020, doi: 10.1016/j.compositesb.2020.108117.
- [24] Y. Zhou, Y. Li, D. Jiang, Y. Chen, Y. Min Xie, and L. J. Jia, “In-plane impact behavior of 3D-printed auxetic stainless honeycombs”, Engineering Structures, vol. 266, art. no. 114656, 2022, doi: 10.1016/j.engstruct.2022.114656.
- [25] B. Ungureanu, Y. Achaoui, S. Enoch, S. Brűlé, and S. Guenneau, “Auxetic-like metamaterials as novel earthquake protections”, EPJ Applied Metamaterials, vol. 2, 2015, doi: 10.1051/epjam/2016001.
- [26] Y. Zhang, X. Ren, X.Y. Zhang, T.T. Huang, L. Sun, and Y.M. Xie, “A novel buckling-restrained brace with auxetic perforated core: Experimental and numerical studies”, Engineering Structures, vol. 249, 2021, doi: 10.1016/j.engstruct.2021.113223.
- [27] Q. Zhang, Y. Zhu, F. Lu, C. Yu, X. Ren, and Y. Shao, “A novel buckling-induced planner isotropic auxetic meta-structure and its application in BRB: A numerical study”, Mechanics of Advanced Materials and Structures, vol. 31, no. 24, pp. 1-14, 2024, doi: 10.1080/15376494.2023.2224810.
- [28] Y. Zhu, J. Wang, X. Cai, Z. Xu, and Y. Wen, "Cyclic behavior of ellipse and peanut-shaped perforated buckling-restrained braces", Engineering Structures, vol. 291, art. no. 116432, 2023, doi: 10.1016/j.engstruct.2023.116432.
- [29] A.A. Hamed, R.B. Asl, and H. Rahimzadeh, “Experimental and numerical study on the structural performance of auxetic-shaped, ring-shaped and unstiffened steel plate shear walls”, Journal of Building Engineering, vol. 34, art. no. 101939, 2021, doi: 10.1016/j.jobe.2020.101939.
- [30] J.Wang, Y. Zhu, and X. Cai, “Numerical modeling of seismic behavior of ellipse and peanut-shaped auxetic steel plate shear walls”, Low-carbon Materials and Green Construction, vol. 1, art. no. 10, 2023, doi: 10.1007/s44242-023-00011-9.
- [31] J. Kim and H. Choi, “Behavior and design of structures with buckling-restrained braces”, Engineering Structures, vol. 26, no. 6, pp. 693-706, 2004, doi: 10.1016/j.engstruct.2003.09.010.
- [32] L.A. Fahnestock, R. Sause, J.M. Ricles, and L.W. Lu, “Ductility demands on buckling-restrained braced frames under earthquake loading”, Earthquake Engineering and Engineering Vibration, vol. 2, no. 2, pp. 255-268, 2003, doi: 10.1007/s11803-003-0009-5.
- [33] P. Saingam, et al., “Composite behavior in RC buildings retrofitted using buckling-restrained braces with elastic steel frames”, Engineering Structures, vol. 219, art. no. 110896, 2020, doi: 10.1016/j.engstruct.2020.110896.
- [34] C. Avci-Karatas, O.C. Celik, and C. Yalcin, “Experimental Investigation of Aluminum Alloy and Steel Core Buckling Restrained Braces (BRBs)”, International Journal of Steel Structures, vol. 18, no. 2, pp. 650-673, 2018, doi: 10.1007/s13296-018-0025-y.
- [35] C. Avci-Karatas, O.C. Celik, and S. Ozmen Eruslu, “Modeling of Buckling Restrained Braces (BRBs) using Full-Scale Experimental Data”, KSCE Journal of Civil Engineering, vol. 23, no. 10, pp. 4431-4444, 2019, doi: 10.1007/s12205-019-2430-y.
- [36] M. Mirtaheri, A. Gheidi, A.P. Zandi, P. Alanjari, and H.R. Samani, “Experimental optimization studies on steel core lengths in buckling restrained braces”, Journal of Constructional Steel Research, vol. 67, no. 8, pp. 1244-1253, 2011, doi: 10.1016/j.jcsr.2011.03.004.
- [37] F. Barbagallo, M. Bosco, E.M. Marino, and P.P. Rossi, “Achieving a more effective concentric braced frame by the double-stage yield BRB”, Engineering Structures, vol. 186, pp. 484-497, 2019, doi: 10.1016/j.engstruct.2019.02.028.
- [38] H.M. Yazdi, M. Mosalman, and A.M. Soltani, “Seismic Study of Buckling Restrained Brace System without Concrete Infill”, International Journal of Steel Structures, vol. 18, no. 1, pp. 153-162, 2018, doi: 10.1007/s13296-018-0312-7.
- [39] Q. Chen, C.L. Wang, S. Meng, and B. Zeng, “Effect of the unbonding materials on the mechanic behavior of all-steel buckling-restrained braces”, Engineering Structures, vol. 111, pp. 478–493, 2016, doi: 10.1016/j.engstruct.2015.12.030.
- [40] C.L. Wang, T. Usami, and J. Funayama, “Evaluating the influence of stoppers on the low-cycle fatigue properties of high-performance buckling-restrained braces”, Engineering Structures, vol. 41, pp. 167-176, 2012, doi: 10.1016/j.engstruct.2012.03.040.
- [41] F. Genna, “Lateral thrust in all-steel buckling-restrained braces: Experimental and FEM results”, Engineering Structures, vol. 213, art. no. 110512, 2020, doi: 10.1016/j.engstruct.2020.110512.
- [42] M.H. Mortezagholi and S.M. Zahrai, “Analytical and numerical studies on reducing lateral restraints in conventional & all steel Buckling Restrained Braces”, Journal of Building Engineering, vol. 32, 2020, doi: 10.1016/j.jobe.2020.101513.
- [43] K. Deng, P. Pan, X. Nie, X. Xu, P. Feng, and L. Ye, “Study of GFRP Steel Buckling Restraint Braces”, Journal of Composites for Construction, vol. 19, no. 6, pp. 1-8, 2015, doi: 10.1061/(asce)cc.1943-5614.0000567.
- [44] P. Dusicka and J. Tinker, “Global Restraint in Ultra-Lightweight Buckling-Restrained Braces”, Journal of Composites for Construction, vol. 17, no. 1, pp. 139-150, 2013, doi: 10.1061/(asce)cc.1943-5614.0000320.
- [45] J. Zhao, B. Wu, and J. Ou, “A novel type of angle steel buckling-restrained brace: cyclic behavior and failure mechanism”, Earthquake Engineering and Structural Dynamics, vol. 40, no. 10, pp. 1083-1102, doi: 10.1002/eqe.1071.
- [46] X. Cahís, E. Simon, D. Piedrafita, and A. Catalan, “Core behavior and low-cycle fatigue estimation of the Perforated Core Buckling-Restrained Brace”, Engineering Structures, vol. 174, pp. 126-138, 2018, doi: 10.1016/j.engstruct.2018.07.044.
- [47] Z. Yun, Y. Cao, J. Takagi, G. Zhong, and Z. He, “Experimental and numerical investigation of a novel all-steel assembled core perforated buckling-restrained brace”, Journal of Constructional Steel Research, vol. 193, art. no. 107288, 2022, doi: 10.1016/j.jcsr.2022.107288.
- [48] D. Piedrafita, X. Cahis, E. Simon, and J. Comas, “A new perforated core buckling restrained brace”, Engineering Structures, vol. 85, pp. 118-126, 2015, doi: 10.1016/j.engstruct.2014.12.020.
- [49] B. Asgarian and S. Moradi, “Seismic response of steel braced frames with shape memory alloy braces”, Journal of Constructional Steel Research, vol. 67, no. 1, pp. 65-74, 2011, doi: 10.1016/j.jcsr.2010.06.006.
- [50] A.F. Ghowsi, D.R. Sahoo, and P.C.A. Kumar, “Cyclic tests on hybrid buckling-restrained braces with Febased SMA core elements”, Journal of Constructional Steel Research, vol. 175, art. no. 106323, 2020, doi: 10.1016/j.jcsr.2020.106323.
- [51] M. Bashiri and V. Toufigh, “Numerical and experimental investigation on a BRB confined with partially carbon fiber reinforced polymer (CFRP)”, Engineering Structures, vol. 223, 2020, doi: 10.1016/j.engstruct.2020.111150.
- [52] M. Jia, X. Yu, D. Lu, and B. Lu, “Experimental research of assembled buckling-restrained braces wrapped with carbon or basalt fiber”, Journal of Constructional Steel Research, vol. 131, pp. 144-161, 2017, doi: 10.1016/j.jcsr.2017.01.004.
- [53] Y. Fang, L. Lv, Y. Gao, and Z. Fu, "Experimental of buckling restrained brace hysteretic performance with carbon fiber wrapped in concrete", Archives of Civil Engineering, vol. 70, no. 1, pp. 527-541, 2024, doi: 10.24425/ace.2024.148926
- [54] T. Usami, H. Ge, and A. Kasai, “Overall buckling prevention condition of buckling-restrained braces as a structural control damper”, in 14th World Conference on Earthquake Engineering, 12-17 Oct. 2008 Beijing, China. [Online]. Available: http://www.iitk.ac.in/nicee/wcee/article/14_05-05-0128.PDF.
- [55] AISC 341-10 Seismic Provisions for Structural Steel Buildings. American Institute of Steel Construction, 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b7c6722-de42-4f33-ad1c-9e23229ad2dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.