PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of fine particulate matter in low-emission zones using a modified numerical method for a system of ordinary differential equations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Currently, many European cities have severely exceeded the EU air quality standards and are struggling with high concentrations of fine particulate matter PM10 and PM2.5 in the air, with road transport often being one of the major polluters. One of the forms for correction of the problem that many cities in the EU are currently using is the construction of low-emission zones. For the prediction of PM10 and PM2.5, a modified numerical method for a system of ordinary differential equations has been proposed. In the right part of this system, in addition to the main trend and the periodicity of PM10 and PM2.5, their correlation is taken into account. Against the background of the best solution obtained, a forecast is made fo the emission levels in a period of one week in the town of Ruse.
Słowa kluczowe
Czasopismo
Rocznik
Strony
197--210
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
  • University of Ruse, Department of Transport; 8 Studentska St., 7017 Ruse, Bulgaria
  • University of Ruse, Department of Applied Mathematics and Statistics; 8 Studentska St. 7017 Ruse, Bulgaria
  • University of Ruse, Department of Transport, 8 Studentska St., 7017 Ruse, Bulgaria
  • University of Ruse, Department of Transport, 8 Studentska St., 7017 Ruse, Bulgaria
Bibliografia
  • 1. Wijers, P. Low Emission Zones White Paper. 2020. Available at: https://making-citiessafer.com/low-emission-zones-white-paper/.
  • 2. Lee, К. & Bernard, Y. & Dallmann, T. & Braun, C. & Miller, J. Impacts of a low-emission zone in Sofia. The Real Urban Emissions (TRUE) Initiative. London. United Kingdom. 2021. 21 p. Available at: https://www.trueinitiative.org/media/792101/impacts-of-lez-in-sofia-true-reporten.pdf.
  • 3. Министерство на информационните технологии и съобщенията. Наредба No Н-32 от 16.12.2011 г. за периодичните прегледи за проверка на техническата изправност на пътните превозни средства. Издадена от министъра на транспорта, информационните технологии и съобщенията, София. обн., ДВ, бр. 104 от 27.12.2011 г., в сила от 1.01.2012 г., попр., бр. 84 от 29.09.2020 г., c.300 [In Bulgarian: Ministry of Transport and Communications. Ordinance No. H-32 of 16.12.2011 for periodic inspections to check the roadworthiness of road vehicles. Sofia. 2020. 300 p.]. Available at: https://rta.government.bg/upload/633/nH32.pdf.
  • 4. Община Русе. Програмата за управление качеството на атмосферния въздух по показатели ФПЧ10 и ФПЧ 2.5 на Община Русе периода 2021-2026 г., Русе. 2021. 251 с. [In Bulgarian: Municipality of Ruse. The program for the management of atmospheric air quality according to indicators ФРЧ10 and ФРЧ 2.5 of the Municipality of Ruse for the period 2021-2026. Ruse. 2021.251 p.]
  • 5. Georgiev, I. & Centeno, V. & Mihova, V. & Pavlov, V. A modified ordinary differential equation approach in price forecasting. AIP Conference Proceedings. 2022. Vol. 2459. No. 030008. DOI: https://doi.org/10.1063/5.0083542.
  • 6. Dimov, I. & Todorov, V. & Sabelfeld, K. A study of highly efficient stochastic sequences for multidimensional sensitivity analysis. Journal Monte Carlo Methods and Applications. 2022.Vol. 28. No. 1. P. 1-12. DOI: https://doi.org/10.1515/mcma-2022-2101.
  • 7. Lascsáková, M. The analysis of the numerical price forecasting success considering the modification of the initial condition value by the commodity stock exchanges. Acta Mechanica Slovaca. 2018. Vol. 22(3). P. 12-19.
  • 8. Markova, M. Foreign exchange rate forecasting by artificial neural networks. Application of Mathematics in Technical and Natural Sciences. 2019. Vol. 2164. No. 060010-1-060010-14. DOI: 10.1063/1.5130812. AIP Publishing.
  • 9. Ngo, T.H.D. & Bros, W. The Box-Jenkins methodology for time series models. Proceedings of the SAS Global Forum. 2013. Vol. 6. P. 1-11.
  • 10. Sahed, A. & et al. Forecasting natural gas prices using nonlinear autoregressive neural network. I. J. Mathematical Sciences and Computing. 2020. Vol. 5. P. 37-46.
  • 11. Todorov, V. & Dimov, I. & Ostromsky, T. & et al. Advanced stochastic approaches for Sobol’ sensitivity indices evaluation. Neural Comput & Applic. 2021. Vol. 33. P. 1999-2014. DOI: https://doi.org/10.1007/s00521-020-05074-4.
  • 12. Xue, M. & Lai, C.H. From time series analysis to a modified ordinary differential equation. Journal of Algorithms & Computational Technology. 2018. Vol. 12(2). P. 85-90.
  • 13. Столична община. Приложение No 14. Мярка „Зони с ниски емисии по отношение на ФПЧ10, ФПЧ2.5 и NОx от транспорта, като се включат и емисиите на ФПЧ от битово отопление“ в Столична община. 2021. 10 с. [In Bulgarian: Sofia Municipality. Annex No 14. Measure "Low emission zones with respect to PM10, PM2.5 and NOx from transport, including PM emissions from domestic heating" in Sofia Municipality. 2021. 10 p.] Available at: https://www.sofia.bg/documents/20182/10412985/Приложение+14.pdf/.
  • 14. EU. Urban Access Regulations in Europe. 2022. Available at: https://urbanaccessregulations.eu/countries-mainmenu-147.
  • 15. European Environment Agency. Interactive map. Associations between exposure to PM2.5, mortality and GDP per capita. 2022. Available at: https://eea.maps.arcgis.com/apps/InteractiveLegend/index.html?appid=f008e0dc0ce24edfae5463748de10f27.
  • 16. Web site of the Time Series Analysis. Available at: https://www.statisticssolutions.com/time-seriesanalysis/#:~:text=Time%20series%20analysis%20is%20a,particular%20time%20periods%20or%20intervals.&text=Cross%2Dsectional%20data%3A%20Data%20of,the%20same%20point%20in%20time.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b7c4095-1844-489c-b244-b8f2e6e3a449
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.