PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of Artificial Neural Networks for Modelling the Drape Behaviour of Woollen Fabrics Treated with Dry Finishing Processes

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zastosowanie sztucznych sieci neuronowych dla modelowania układalności wełnianych tkanin poddanych procesom suchego wykańczania
Języki publikacji
EN
Abstrakty
EN
The relationship between fabric drape, low stress mechanical properties and finishing processes is relatively complex. This paper demonstrates the possibility of using artificial neural networks to identify the fabric drape of woollen fabrics treated with different dry finishing processes (stenter, decatising, superfinish, formula, KADE strong/weak - autoclave decatizing). The mechanical and surface properties of woollen fabrics were measured by both the KES-FB and FAST systems, and then the results obtained were applied to artiicial neural network (ANN) modelling. ANN models were compared by verifying the Mean Square Error (MSE) and Correlation coefficient (R-value). The results indicated that each model is capable of making quantitatively accurate drape behaviour predictions for wool fabrics (Rmin = 0.92, MSEmin = 0).
PL
Związek pomiędzy układalnością tkaniny, właściwościami mechanicznymi przy niskich naprężeniach a procesami wykańczalniczymi jest stosunkowo skomplikowany. Artykuł ten wskazuje na możliwość wykorzystania sztucznych sieci neuronowych do identyfikacji układalności tkanin wełnianych poddanych procesom suchego wykańczania. Właściwości mechaniczne i powierzchniowe wełnianych tkanin zmierzono za pomocą KES-FB i FAST, a następnie otrzymane wyniki wprowadzono do sztucznej sieci neuronowej (ANN). Modele ANN porównano przez weryfikację blędu średniokwadratowego i współczynnika korelacji. Wyniki wykazały, że każdy model może być wykorzystany do utworzenia ilościowo dokładnych prognoz układalności dla tkanin wełnianych.
Rocznik
Strony
90--99
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Textile Engineering Department, Istanbul Technical University, Istanbul, Turkey, kursuns@itu.edu.tr
autor
  • Textile Engineering Department, Istanbul Technical University, Istanbul, Turkey
autor
  • Department of Textile Materials and Design, University of Maribor, Maribor, Slovenia
  • Textile Engineering Department, Istanbul Technical University, Istanbul, Turkey
autor
  • Textile Engineering Department, Istanbul Technical University, Istanbul, Turkey
Bibliografia
  • 1. Kawabata S. The development of the objective measurement of fabric handle. In: Kawabata S, Postle R, Niwa M. (Eds.) In: Objective Specification of Fabric Quality, Mechanical Properties and Performance, Textile Machinery Society of Japan, Osaka, Japan, 1982: 31-59.
  • 2. Brandt H, Fortess F, Wiener M, Furniss C. The use of KES and FAST instruments in predicting processability of fabrics in sewing. International Journal of Clothing Science and Technology 1990; 2, ¾: 34-39.
  • 3. Eryuruk SH, Kalaoglu F, Kursun Bahadir S, Jevsnik S. Analysing the Effect of Decatizing on the Frictional Properties of Wool Fabrics. Fibres & Textiles in Eastern Europe 2014; 22, 3(105): 79-83.
  • 4. Brady PR. A Guide to the Theory and Practice of Finishing Woven Wool Fabrics. CSIRO Wool Technology, Australia, ISBN 0 643 063250, 1997.
  • 5. Žunič Lojen D, Jevšnik S. Some Aspects of Fabric Drape. Fibres & Textiles in Eastern Europe 2007; 15, 4 (63) : 39– 45.
  • 6. Tokmak O, Berkalp OB, Gersak J. Investigation of the Mechanics and Performance of Woven Fabrics Using Objective Evaluation Techniques. Part I: The Relationship Between FAST, KES-F and Cusick’s Drape-Meter Parameters. Fibres & Textiles in Eastern Europe 2010; 18, 2: 55–59.
  • 7. Shyr TW, Wang PN, Cheng KB. A Comparison of the Key Parameters Affecting the Dynamic and Static Drape Coefficients of Natural-Fibre Woven Fabrics by a Newly Devised Dynamic Drape Automatic Measuring System. Fibres & Textiles in Eastern Europe 2007; 15, 3 (62): 81–86.
  • 8. Pattanayak AK, Luximon A, Khandual A. Prediction of drape profile of cotton woven fabrics using artificial neural network and multiple regression method. Textile Research Journal 2010; 81, 6: 559–566.
  • 9. Jedda H, Ghith A, Sakli F. Prediction of fabric drape using the FAST system. J. Textile Inst. 2007; 98, 3: 219–225.
  • 10. Uçar N, Ertuğrul S. Prediction of Fuzz Fibers on Fabric Surface by Using Neural Network and Regression Analysis. Fibres & Textiles in Eastern Europe 2007; 15, 2 (61): 58–61.
  • 11. Lewandowski S, Drobina R. Prediction of Properties of Unknotted Spliced Ends of Yarns Using Multiple Regression and Artificial Neural Networks. Part I: Identification of Spliced Joints of Combed Wool Yarn by Artificial Neural Networks and Multiple Regression. Fibres & Textiles in Eastern Europe 2008; 16, 5 (70): 33-39.
  • 12. Haghighat E, Johari MS, Etrati SM, Tehran MA. Study of the Hairiness of Polyester-Viscose Blended Yarns. Part III - Predicting Yarn Hairiness Using an Artificial Neural Network. Fibres & Textiles in Eastern Europe 2012; 20, 1 (90): 33-38.
  • 13. Golob D, Osterman DP, Zupan J. Determination of Pigment Combinations for Textile Printing Using Artificial Neural Networks. Fibres & Textiles in Eastern Europe 2008; 16, 3 (68): 93–98.
  • 14. Bhattacharjee D, Kothari VK. A Neural Network System for Prediction of Thermal Resistance of Textile Fabrics. Textile Research Jornal 2007; 77, 1: 4–12.
  • 15. Yildiz Z, Dal V, Ünal M, Yildiz K. Use of Artificial Neural Networks for Modelling of Seam Strength and Elongation at Break. Fibres & Textiles in Eastern Europe 2013; 21, 5(101): 117-123.
  • 16. Farooq A, Cherif C. Draw Frame Use of Artificial Neural Networks for Determining the Leveling Action Point at the Autoleveling, Textile Research Jornal 2008; 78: 502-509.
  • 17. Hearle JWS, Amirbayat J. Analysis of drape by means of dimensional group. Textile Research Journal 1986; 56: 727- 733.
  • 18. Jevšnik S, Geršak J. The Analysis of fused panel drape using the finite element method. In: 4rd International Conference IMCEP’2003, Innovation and Modelling of Clothing Engineering. Faculty of Mechanical Engineering, Maribor, 2003: 78-85.
  • 19. Hu J. Structure and mechanics of woven fabrics. Ed. Woodhead publishing in Textiles, Cambridge, 2004.
  • 20. Collier R, Collier BJ. Drape Prediction by Means of Finite Element Analysis. Journal of Textile Institute 1991; 82: 96-107.
  • 21. Frydrych I, Dziworska G, Cieslinska A. Mechanical fabric properties influencing the drape handle. International Journal of Clothing Science and Technology 2000; 12: 171-183.
  • 22. Morooka H, Masako N. Relation between Drape Coefficient and Mechanical Properties of Fabrics. Journal of The Textile Machinery Society of Japan 1973; 22: 67-73.
  • 23. Kawabata S, Niwa M, et al. Recent progress in the application of objective measurement to clothing manufacture. Textile objective measurement and automation in garment manufacture. Ed. University of Bradford, UK, Ellis Horwood, 1990.
  • 24. Boos AGD, Tester DH. SiroFAST - Fabric Assurance by Simple Testing. Melbourne, Australia, CSIRO - Division of Wool Technology: 1994, 1-35.
  • 25. Ghani SA. Seam Performance: Analysis and Modelling. PhD Thesis, University of Manchester, (2011).
  • 26. Khan Z, Lim AEK, Wang L, Wang X, Beltran R. An Artificial Neural Networkbased Hairiness Prediction Model for Worsted Wool Yarns. Textile Research Journal 2009; 79: 714-720.
  • 27. Gharehaghaji A, Shanbeh M, Palhang M. Analysis of Two Modeling Methodologies for Predicting the Tensile Properties of Cotton-covered Nylon Core Yarns. Textile Research Jornal 2007; 77, 8: 565–571.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b7b71b6-59cd-4c44-abf8-3d2e4e8c8baa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.