PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermoelectric properties of bismuth-doped magnesium silicide obtained by the self-propagating high-temperature synthesis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Doping is one of the possible ways to significantly increase the thermoelectric properties of many different materials. It has been confirmed that by introducing bismuth atoms into Mg sites in the Mg2Si compound, it is possible to increase career concentration and intensify the effect of phonon scattering, which results in remarkable enhancement in the figure of merit (ZT) value. Magnesium silicide has gained scientists’ attention due to its nontoxicity, low density, and inexpensiveness. This paper reports on our latest attempt to employ ultrafast self-propagating high-temperature synthesis (SHS) followed by the spark plasma sintering (SPS) as a synthesis process of doped Mg2Si. Materials with varied bismuth doping were fabricated and then thoroughly analyzed with the laser flash method (LFA), X-ray diffraction (XRD), scanning electron microscopy (SEM) with an integrated energy-dispersive spectrometer (EDS). For density measurement, the Archimedes method was used. The electrical conductivity was measured using a standard four-probe method. The Seebeck coefficient was calculated from measured Seebeck voltage in the sample subjected to a temperature gradient. The structural analyses showed the Mg2Si phase as dominant and Bi2Mg3 located at grain boundaries. Bismuth doping enhanced ZT for every dopant concentration. ZT = 0.44 and ZT=0.38 were obtained for 3wt% and 2wt% at 770 K, respectively.
Rocznik
Strony
art. no. e141007
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Aleja Lotników 32/46, 02-668 Warsaw, Poland
  • Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Aleja Lotników 32/46, 02-668 Warsaw, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
  • Faculty of Materials Science and Ceramic, AGH University of Science and Technology, Kraków, Al. Mickiewicza 30, 30-059, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
  • Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Aleja Lotników 32/46, 02-668 Warsaw, Poland
  • Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Aleja Lotników 32/46, 02-668 Warsaw, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
Bibliografia
  • [1] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit”, Nature, vol. 413, no. 6856, pp. 597–602, Oct. 2001, doi: 10.1038/35098012.
  • [2] G.S. Nolas, M. Kaeser, R.T. Littleton, and T.M. Tritt, “High figure of merit in partially filled ytterbium skutterudite materials”, Appl. Phys. Lett., vol. 77, no. 12, p. 1855, 2000, doi: 10.1063/1.1311597.
  • [3] Y. Wang et al., “Enhanced thermoelectric perfromance in cubic form of SnSe stabilized through enformatingly alloying AgSbTe2”, Acta Mater., vol. 227, p. 117681, Apr. 2022, doi: 10.1016/j.actamat.2022.117681.
  • [4] Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G.J. Snyder, “Convergence of electronic bands for high performance bulk thermoelectrics”, Nature, vol. 473, no. 7345, pp. 66–69, May 2011, doi: 10.1038/nature09996.
  • [5] R. Biswas, S. Vitta, and T. Dasgupta, “Influence of zinc content and grain size on enhanced thermoelectric performance of optimally doped ZnSb”, Mater. Res. Bull., vol. 149, p. 111702, May 2022, doi: 10.1016/j.materresbull.2021.111702.
  • [6] J. R. Sootsman, D. Y. Chung, and M. G. Kanatzidis, “New and Old Concepts in Thermoelectric Materials”, Angew. Chem. Int. Ed., vol. 48, no. 46, pp. 8616–8639, Nov. 2009, doi: 10.1002/anie.200900598.
  • [7] R. Zybała et al., “Characterization of nanostructured bulk cobalt triantimonide doped with tellurium and indium prepared by pulse plasma in liquid method”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 1, pp. 125–134, 2020, doi: 10.24425/BPASTS.2020.131835.
  • [8] G. Gabka et al., “Facile Gram-Scale Synthesis of the First n-Type CuFeS2 Nanocrystals for Thermoelectric Applications”, Eur. J. Inorg. Chem., vol. 2017, no. 25, pp. 3150–3153, Jul. 2017, doi: 10.1002/ejic.201700611.
  • [9] K. Biswas et al., “High-performance bulk thermoelectrics with all-scale hierarchical architectures”, Nature, vol. 489, no. 7416, pp. 414–418, Sep. 2012, doi: 10.1038/nature11439.
  • [10] F. D ̨abrowski et al., “Microstructure and thermoelectric properites od doped FeSi2 with addition of B4C nanoparticles”, Arch. Metall. Mater., vol. 66, no. 4, pp. 1157–1162, 2021, doi: 10.24425/AMM.2021.136436.
  • [11] G. Chen, M. S. Dresselhaus, G. Dresselhaus, J.-P. Fleurial, and T. Caillat, “Recent developments in thermoelectric materials”, Int. Mater. Rev., vol. 48, no. 1, pp. 45–66, Feb. 2003, doi: 10.1179/095066003225010182.
  • [12] R. Hu, Z. Zhou, C. Sheng, S. Han, H. Yuan, and H. Liu, “Ultralow lattice thermal conductivity and high thermoelectric performance of the WS2/WTe2 van der Waals superlattice”, Phys. Lett. A, vol. 430, p. 127986, Apr. 2022, doi: 10.1016/j.physleta.2022.127986.
  • [13] R. Zybała et al., “Synthesis and Characterization of Antimony Telluride for Thermoelectric and Optoelectronic Applications”, Arch. Metall. Mater., vol. 62, no. 2, pp. 1067–1070, Jun. 2017, doi: 10.1515/amm-2017-0155.
  • [14] J. Tani and H. Kido, “Thermoelectric properties of Bi-doped Mg2Si semiconductors”, Phys. B Condens. Matter, vol. 364, no. 1–4, pp. 218–224, Jul. 2005, doi: 10.1016/j.physb.2005.04.017.
  • [15] P. Nieroda, J. Leszczynski, and A. Kolezynski, “Bismuth doped Mg 2 Si with improved homogeneity: Synthesis, characterization and optimization of thermoelectric properties”, J. Phys. Chem. Solids, vol. 103, pp. 147–159, Apr. 2017, doi: 10.1016/j.jpcs.2016.11.027.
  • [16] R.J. LaBotz, D.R. Mason, and D.F. O’Kane, “The Thermoelectric Properties of Mixed Crystals of Mg2GexSi1−x”, J. Electrochem. Soc., vol. 110, no. 2, p. 127, 1963, doi: 10.1149/1.2425689.
  • [17] D. Berthebaud and F. Gascoin, “Microwaved assisted fast synthesis of n and p-doped Mg2Si”, J. Solid State Chem., vol. 202, pp. 61–64, Jun. 2013, doi: 10.1016/j.jssc.2013.03.014.
  • [18] R. Nakagawa, H. Katsumata, S. Hashimoto, and S. Sakuragi, “Synthesis and crystal growth of Mg2Si by the liquid encapsulated vertical gradient freezing method”, Jpn. J. Appl. Phys., vol. 54, no. 8, p. 085503, Jul. 2015, doi: 10.7567/jjap.54.085503.
  • [19] M. Yoshinaga, T. Iida, M. Noda, T. Endo, and Y. Takanashi, “Bulk crystal growth of Mg2Si by the vertical Bridgman method”, Thin Solid Films, vol. 461, no. 1, pp. 86–89, Aug. 2004, doi: 10.1016/j.tsf.2004.02.072.
  • [20] G. Fu, L. Zuo, J. Longtin, C. Nie, and R. Gambino, “Thermoelectric properties of magnesium silicide fabricated using vacuum plasma thermal spray”, J. Appl. Phys., vol. 114, no. 14, p. 144905, Oct. 2013, doi: 10.1063/1.4825045.
  • [21] T. Sakamoto et al., “Thermoelectric Characteristics of a Commercialized Mg2Si Source Doped with Al, Bi, Ag, and Cu”, J. Electron. Mater., vol. 39, no. 9, pp. 1708–1713, Sep. 2010, doi: 10.1007/s11664-010-1155-y.
  • [22] A. Kolezynski, P. Nieroda, and K. T. Wojciechowski, “Li doped Mg2Si p-type thermoelectric material: Theoretical and experimental study”, Comput. Mater. Sci., vol. 100, pp. 84–88, Apr. 2015, doi: 10.1016/j.commatsci.2014.11.015.
  • [23] S.-M. Choi, K.-H. Kim, I.-H. Kim, S.-U. Kim, and W.-S. Seo, “Thermoelectric properties of the Bi-doped Mg2Si system”, Curr. Appl. Phys., vol. 11, no. 3, pp. S388–S391, May 2011, doi: 10.1016/j.cap.2011.01.031.
  • [24] X. Cheng, N. Farahi, and H. Kleinke, “Mg2Si-Based Materials for the Thermoelectric Energy Conversion”, JOM, vol. 68, no. 10, pp. 2680–2687, Oct. 2016, doi: 10.1007/s11837-016-2060-5.
  • [25] J. Li et al., “Enhanced thermoelectric performance of bismuthdoped magnesium silicide synthesized under high pressure”, J. Mater. Sci., vol. 53, no. 12, pp. 9091–9098, Jun. 2018, doi: 10.1007/s10853-018-2185-8.
  • [26] M.J. Kruszewski, Ł. Ciupiński, and R. Zybała, “Review of rapid fabrication methods of skutterudite materials”, Mater. Today Proc., vol. 44, pp. 3475–3482, 2021, doi: 10.1016/ j.matpr.2020.05.808.
  • [27] Q. Zhang et al., “Phase Segregation and Superior Thermoelectric Properties of Mg2Si1−xSbx (0?x?0.025) Prepared by Ultra-fast Self-Propagating High-Temperature Synthesis”, ACS Appl. Mater. Interfaces, vol. 8, no. 5, pp. 3268–3276, Feb. 2016, doi: 10.1021/acsami.5b11063.
  • [28] X. Su et al., “Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing”, Nat. Commun., vol. 5, no. 1, p. 4908, Dec. 2014, doi: 10.1038/ncomms5908.
  • [29] S.-W. You and I.-H. Kim, “Solid-state synthesis and thermoelectric properties of Bi-doped Mg2Si compounds”, Curr. Appl. Phys., vol. 11, no. 3, pp. S392–S395, May 2011, doi: 10.1016/j.cap.2011.03.017.
  • [30] N. Farahi et al., “Sb- and Bi-doped Mg2Si: location of the dopants, micro- and nanostructures, electronic structures and thermoelectric properties”, Dalton Trans, vol. 43, no. 40, pp. 14983–14991, Jun. 2014, doi: 10.1039/C4DT01177E.
  • [31] S. Fiameni et al., “Synthesis and characterization of Bi-doped Mg2Si thermoelectric materials”, AIP Conf. Proc., 2012, vol. 1449, pp. 191–194, doi: 10.1063/1.4731529.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b721ca1-8d94-458a-9de8-f891b887ae83
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.