PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Absolute chronology of fluvial events in the Upper Dnieper River system and its palaeogeographic implications

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A set of 121 radiocarbon and OSL dates has been compiled from the Upper Dnieper River and tributary valleys, Western European Russia. Each date was attributed according to geomorphic/sedimentological events and classes of fluvial activity. Summed probability density functions for each class were used to establish phases of increasing and reducing fluvial activity. The oldest detected reduction of fluvial activity was probably due to glacial damming at LGM. Within the Holocene three palaeohydrological epochs of millennial-scale were found: (1) high activity at 12,000–8,000 cal BP marked by large river palaeochannels; (2) low activity at 8,000–3,000 cal BP marked by formation of zonal-type soils on -floodplains; short episodes of high floods occurred between 6,500—4,400 cal BP; (3) contrasting hydrological oscillations since 3,000 cal BP with periods of high floods between 3,000–2,300 (2,000) and 900–100 cal BP separated by long interval of low floods 2,300 (2,000)-900 cal BP when floodplains were not inundated — zonal-type soils were developing and permanent settlements existed on floodplains. In the last millennium, four centennial-scale intervals were found: high flooding intervals are mid-11–mid-15th century and mid-17–mid-20th century. Intervals of flood activity similar to the present-day were: mid-15–mid-17th century and since mid-19th century till present. In the context of palaeohydrological changes, discussed are selected palaeogeographic issues such as: position of the glacial boundary at LGM, role of changing amounts of river runoff in the Black Sea level changes, floodplain occupation by Early Medieval population.
Wydawca
Czasopismo
Rocznik
Strony
278--293
Opis fizyczny
Bibliogr. 55 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Geography, Moscow State University, Vorobiovy Gory 1, Moscow, 119991, Russia
autor
  • GADAM Centre of Excellence, Silesian University of Technology, Krzywoustego 2, 44-100, Gliwice, Poland
  • Faculty of Geography and Geoecology, Sankt-Petersburg State University, 10th Line, house 33, Sankt-Petersburg, 199178, Russia
  • Institute of Geography, Russian Academy of Sciences, Staromonetny Per. 29, Moscow, 119017, Russia
  • Faculty of Geography, Moscow State University, Vorobiovy Gory 1, Moscow, 119991, Russia
  • Faculty of Geography, Moscow State University, Vorobiovy Gory 1, Moscow, 119991, Russia
  • Geological Institute, Russian Academy of Sciences, Pyzhevsky Per. 7, Moscow, 119017, Russia
  • Institute of Geography, Russian Academy of Sciences, Staromonetny Per. 29, Moscow, 119017, Russia
Bibliografia
  • 1.Aleksandroskiy AL, Krenke NA and Nefedov VS, 2005. Paleorelief vysokoy poimy Dnepra na territorii Gnezdovskogo archeologicheskogo kompleksa (Paleotopography of the Dnieper River high floodplain at the Gnezdovo archaeological site). Rossiyskaya Archeologia 1: 112–123 (in Russian).
  • 2.Arbogast AF, Bookout JR, Schrotenboer BR, Lansdale A, Rust GL and Bato VA, 2008. Postglacial fluvial response and landform development in the upper Muskegon River valley in North-Central Lower Michigan, U.S.A. Geomorphology 102(3–4): 615–623, DOI 10.1016/j.geomorph.2008.06.008.
  • 3.Barashkova ZK, Lavrovich ON, Briukov IP and Shuleshkina EA, 1998. Karta chetvertichnykh otlozheniy Smolenskoy oblasti (Map of Quaternary deposits, the Smolensk Region, scale 1:500000). Ministry of Natural Resources of Russia (in Russian).
  • 4.Belyaev VR, Golosov VN, Markelov, MV, Evrard O, Ivanova NN, Paramonova TA and Shamshurina EN, 2013. Using Chernobyl derived 137Cs to document recent sediment deposition rates on the River Plava floodplain (Central European Russia). Hydrological Processes 27(6): 807–821, DOI 10.1002/hyp.9461.
  • 5.Borisova O, Sidorchuk A and Panin A, 2006. Palaeohydrology of the Seim River basin, Mid-Russian Upland, based on palaeochannel morphology and palynological data. Catena 66(1–2): 53–73, DOI 10.1016/j.catena.2005.07.010.
  • 6.Bronk Ramsey C, 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1): 337–360.
  • 7.Bronnikova MA and Uspenskaya ON, 2007. Pozdnegolocenovaya evolutcia rastitel'nosti i landshafta na teritorii Gnezdovskogo archeologicheskogo kompleksa (Vegetation and landscape changes at the Gnezdovo archaeological site in the Late Holocene). Gnezdovo: resul'taty kompleksnykh issledovaniy pamiatnika. Murasheva VV, ed. Moscow, State Historical Museum: 162–182 (in Russian).
  • 8.Bronnikova MA, Zazovskaya EP and Bobrov AA, 2003. Local landscape evolution related to human impact of an early medieval preurban center in the Upper Dnieper region (Central Russian Plain): an interdisciplinary experience. Revista Mexicana de Ciencias Geológicas 20(3): 245–262.
  • 9.Butakov GP, Kutbanova SG, Panin AV, Perevoschikov AA and Sere-brennikova IA, 2000. Formirovanie antropogenno obuslovlennogo nailka na poimakhrek Russkoi ravniny (Human-induced alluviation on river floodplains in the Russian Plain). In: Erosionnye i Ruslovye Processy, Issue 3, Moscow, MSU Press: 78–92.
  • 10.Gębica P, 2011. Stratigraphy of alluvial fills and phases of the Holocene floods in the lower Wislok river, SE Poland. Geographia Polonica 84, Special Issue Part I: 39–60.
  • 11.Gębica P, 2013. Chronostratigraphy of alluvia and age of fluvial land-forms in the Carpathian Foreland during the Vistulian. Studia Quaternaria 30(1): 19–27.
  • 12.Gębica P, Szczepanek K and Wieczorek D, 2009. Late Vistulian alluvial filling in the San River valley in the Carpathian foreland (north of Jarosław town). Studia Geomorphologica Carpatho-Balcanica XLIII: 39–61.
  • 13.Gębica P, Starkel L, Jacysyn A and Krapiec M, 2013. Medieval accumulation in the Upper Dniester river valley: the role of human impact and climate change in the Carpathian foreland. Quaternary International 293: 207–218, DOI 10.1016/j.quaint.2012.05.046.
  • 14.Golosov VN, 2009. Issledovania akkumulacii nanosov na poimakh rek: potencial'nie metody I perspektivy (Investigations of sediment deposition on the floodplains: Potentials of methods and perspectives). Geomorfologiya 4: 39–45 (in Russian).
  • 15.Harden T, Macklin MG and Baker VR, 2010. Holocene flood histories in south-western USA. Earth Surface Processes and Landforms 35(6): 707–716, DOI 10.1002/esp.1983.
  • 16.Hoffmann T, Lang A and Dikau R, 2008. Holocene river activity: analysing 14C-dated fluvial and colluvial sediments from Germany. Quaternary Science Reviews 27(21–22): 2031–2040, DOI 10.1016/j.quascirev.2008.06.014.
  • 17.Howard AJ, Macklin MG, Bailey DW, Mills S and Andreescu R, 2004. Lateglacial and Holocene river development in the Teleorman Valley on the southern Romanian Plain. Journal of Quaternary Science 19(3): 271–280, DOI 10.1002/jqs.805.
  • 18.Johnstone E, Macklin M and Lewin J, 2006. The development and application of a database of radiocarbon-dated Holocene fluvial deposits in Great Britain. Catena 66(1–2): 14–23, DOI 10.1016/j.catena.2005.07.006.
  • 19.Kalicki T, 1995. Late Glacial and Holocene evolution of some river valleys in Byelorussia. Paläoklimaforschung 14: 89–100.
  • 20.Kalicki T, 2006. Zapis zmian klimatu oraz działalności człowieka i ich rola w holoceńskiej ewolucji dolin środkowoeuropejskich (Reflection of climatic changes and human activity and their role in the Holocene evolution of Central European valleys). Prace Geograficzne Nr 204 (Geographical Studies No.204). IGiPZ PAN, Warszawa, 2006. 348 p.
  • 21.Kalicki T and Sańko A, 1992. Genesis and age of terraces of the Dnieper River between Orsha and Shklow, Byelorussia. Geographia Polonica 60: 151–174.
  • 22.Kalicki T and Sańko AF, 1998. Palaeohydrological changes in the upper Dneper valley during the last 20 000 years (Belarus). In: Palaeohydrology and Environmental Change (G. Benito, V. R. Baker, K. J. Gregory, eds), Wiley, Chichester: 125–135.
  • 23.Kalicki T, Sauchyk S, Calderoni G and Simakova G, 2008. Climatic versus human impact on the Holocene sedimentation in river valleys of different order: Examples from the upper Dnieper basin, Belarus. Quaternary International 189(1): 91–105, DOI 10.1016/j.quaint.2007.09.028.
  • 24.Kasse C, Bohncke SJP, Vandenberghe J and Gábris G, 2010. Fluvial style changes during the last glacial–interglacial transition in the middle Tisza valley (Hungary). Proceedings of the Geologists' Association 121(2): 180–194.
  • 25.Kvasov DD, 1979. The Late Quaternary history of large lakes and inland seas of Eastern Europe. Annales Academiae Fennicae. Ser. A III 12: 1–71.
  • 26.Lang A, 2003. Phases of soil erosion-derived colluviation in the loess hills of South Germany. Catena 51(3–4): 209–221, DOI 10.1016/S0341-8162(02)00166-2.
  • 27.Leigh DS, 2006. Terminal Pleistocene braided to meandering transition in rivers of the Southeastern USA. Catena 66(1–2): 155–160, DOI 10.1016/j.catena.2005.11.008.
  • 28.Lericolais G, Guichard F, Morigi C, Popescu I, Bulois C, Gillet H and Ryan WBF, 2011. Assessment of Black Sea waterlevel fluctuations since the Last Glacial Maximum. Geological Society of America Special Papers 473: 33–50.
  • 29.Lericolais G, Guichard F, Morigi C, Minereau A, Popescu I and Radan S, 2010. A post Younger Dryas Black Sea regression identified from sequence stratigraphy correlated to core analysis and dating. Quaternary International 225(1): 199–209, DOI 10.1016/j.quaint.2010.02.003.
  • 30.Lewin J, Macklin MG and Johnstone EC, 2005. Interpreting alluvial archives: sedimentological factors in the British Holocene fluvial record. Quaternary Science Reviews 24(16–17): 1873–1889, DOI 10.1016/j.quascirev.2005.01.009.
  • 31.Macklin MG, Benito G, Gregory KJ, Johnstone E, Lewin J, Michczynska DJ, Soja R, Starkel L and Thorndycraft VR, 2006. Past hydrological events reflected in the Holocene fluvial record of Europe. Catena 66(1–2): 145–154, DOI 10.1016/j.catena.2005.07.015.
  • 32.Macklin MG and Lewin J, 1993. Holocene river alluviation in Britain. Zeitschrift für Geomorphologie, Supplementbände 88: 109–122.
  • 33.Macklin MG, Johnstone E and Lewin J, 2005. Pervasive and long-term forcing of Holocene river instability and flooding in Great Britain by centennial-scale climate change. The Holocene 15(7): 937–943, DOI 10.1191/0959683605hl867ft.
  • 34.Macklin MG and Lewin J, 2003. River sediments, great floods and centennialscale Holocene climate change. Journal of Quaternary Science 18(2): 101–105, DOI 10.1002/jqs.751.
  • 35.Major CO, Goldstein SL, Ryan WBF, Lericolais G, Piotrowski AM and Hajdas I, 2006. The co-evolution of Black Sea level and composition through the last deglaciation and its paleoclimatic significance. Quaternary Science Reviews 25(17–18): 2031–2047, DOI 10.1016/j.quascirev.2006.01.032.
  • 36.Murasheva VV, Panin AV and Fetisov AA, 2009. Mezhdisciplinarnye issledovania v arkheologii (po rezul'tatam issledovania Gnezdovskogo arkheologicheskogo kompleksa (Multidisciplinary investigations in archaeology: the Gnezdovo archaeological site case study. Srednie Veka 70(3): 132–147 (in Russian).
  • 37.Panin AV, Fuzeina JN and Belyaev VR, 2009. Longterm development of Holocene and Pleistocene gullies in the Protva River basin, Central Russia. Geomorphology 108(1–2): 71–91, DOI 10.1016/j.geomorph.2008.06.017.
  • 38.Panin AV, Sidorchuk AJ, Baslerov SV, Borisova OK, Kovaliukh NN and Sheremetskaya ED, 2001. Osnovnye etapy istorii rechnykh dolin centra Russkoy ravniny v pozdnem valdae I Holocene (Main stages of river valley development in the centre of the Russian Plain in the Late Valdai – Holocene time). Geomorfologia 2: 19–34 (in Russian).
  • 39.Panin AV and Nefedov VS, 2010. Analysis of Variations in the Regime of Rivers and Lakes in the Upper Volga and Upper Zapadnaya Dvina Based on Archaeological–Geomorphological Data. Water Resources 37(1): 16–32.
  • 40.Pushkina TA, Murasheva VV and Nefedov VS, 2001. Novoe v izuchenii central'nogo selischa v Gnezdove (New studies of the Central settlement in Gnezdovo). Trudy GIM, 124.Gnezdovo: 125 let izychenia pamyatnika. Moscow: 12–26 (in Russian).
  • 41.Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG Bronk Ramsey C, Buck CE, Burr GS, Edwards R, Friedrich M, Grootes PM, Guilderson, TP Hajdas I Heaton TJ Hogg AG, Hugh-en KA, Kaiser KF, Kromer B, Manning FG, McCormac SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM van der Plicht J and Weyhenmeyer CE, 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4): 1111–1150.
  • 42.Salov IN, 1972. Granitsy Moscovskogo i Valdaiskogo lednikovykh schitov v ikh maksimal'nye phasy v Byelorussu i v Smolenskoy oblasti i ikh konechno-morennye compleksy (Boundaries of Moscovian and Valdaian ice sheets at their maximal phases in Byelirussia and Smolensk Region, and their end-morain complexes). In: Kraevye obrazovania materikovykh oledeneniy. Moscow: Nauka: 145–154 (in Russian).
  • 43.Sidorchuk AY, Panin AV and Borisova OK, 2011. Surface runoff to the Black Sea from the East European Plain during Last Glacial Maximum — Lat Glacial time. Geological Society of America Special Papers 473: 1–25.
  • 44.Sidorchuk A, Panin A and Borisova O, 2009. Morphology of river channels and surface runoff in the Volga River basin (East European Plain) during the Late Glacial period. Geomorphology 113(3–4): 137–157, DOI 10.1016/j.geomorph.2009.03.007.
  • 45.Sidorchuk AY, Panin AV and Borisova OK, 2012. River Runoff Decrease in North Eurasian Plains during the Holocene Optimum. Water Resources 39(1): 69–81.
  • 46.Starkel L and Gębica P, 1995. Evolution of river valleys in southern Poland during the Pleistocene-Holocene transition. Biuletyn Peryglacjalny 34: 177–190.
  • 47.Starkel L, Kalicki T, Krąpiec M, Soja R, Gębica P and Czyżowska E, 1996. Hydrological changes of valley floor in the Upper Vistula basin during Late Vistulian and Holocene. In L.
  • 48.Starkel (Ed.), Evolution of the Vistula river valley during the last 15 000 years. Quaestiones Geographicae, Special Issue 9: 7–128.
  • 49.Starkel L, Soja R, Michczynska DJ, 2006. Past hydrological events reflected in Holocene history of Polish rivers. Catena 66(1–2): 24–33, DOI 10.1016/j.catena.2005.07.008.
  • 50.Stolyarova TI, 1970. Karta chetvertichnykh otlozheniy, kvadrat N-36-VIII, masshtab 1 : 200 000 (Map of Quaternary deposits, quadrangle N-36-VIII, scale 1 : 200 000). Moscow; VAGT MinGeo USSR (in Russian).
  • 51.Sukhodolov AN, Arnaut NA, Kudersky LA, Loboda NS, Bekh VV, Skakalsky BG, Katolikov VM and Usatii MA, 2009. Western Steppic Rivers. In: Rivers of Europe (K.Tockner, U.Uehlinger, C.T. Robinson, eds). Elsevier-Academic Press, Amsterdam: 497–523.
  • 52.Szumanski A, 1983. Paleochannels of large meanders in the river valleys of the Polish lowland. Quaternary Studies in Poland 4: 207–216.
  • 53.Szumanski A, 1986. Postglacjalna ewolucja i mechanism transformacji dna doliny dolnego sanu (Post Glacial evolution and mechanizm of transformation of a floor of the lower San valley). Kwartalnik AGH, Geologia 12(1): 1–92.
  • 54.Thorndycraft VR and Benito G, 2006. The Holocene fluvial chronology of Spain: evidence from a newly compiled radiocarbon database. Quaternary Science Reviews 25(3–4): 223–234, DOI 10.1016/j.quascirev.2005.07.003.
  • 55.Vandenberghe J, Kasse C, Bohncke SJP and Kozarski S, 1994. Climate related river activity at the Weichselian–Holocene transition: a comparative study of the Warta and Maas rivers. Terra Nova 6: 476–485.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b70be61-bf51-4d6c-8f45-00e59d2608ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.