Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Management decisions about store atmosphere, such as temperature, or light intensity in retail establishments can be made based on solutions from machine learning methods. These conditions determine whether the customer will stay in the store longer and whether his shopping cart will reach the desired high value. Previous literature research associates certain atmospheric factors with customers' propensity to make purchasing decisions and allows us to identify what influences the customer during shopping and to what extent. The article aims to reveal the feasibility of using machine learning methods to make management decisions based on store atmosphere parameters. When deciding on the conditions in a retail establishment, applicable health and safety regulations should also be considered. This was used to set limits on the input parameters for the model. The authors identified 3 atmospheric factors and, based on them, proposed two types of models: regression and classification models, predicting how long customers stay in an establishment and can classify it into categories: short, medium and long. These models can then be used to create a model that optimizes the parameters in the facility to achieve a minimum given time a customer stays in the facility.
Wydawca
Rocznik
Tom
Strony
460--474
Opis fizyczny
Bibliogr. 44 poz., fig., tab.
Twórcy
- Department of Marketing, Faculty of Management, Lublin University of Technology, ul. Nadbystrzycka 38d, 20-618 Lublin, Poland
autor
- Department of Organization of Enterprise, Faculty of Management, Lublin University of Technology, ul. Nadbystrzycka 38d, 20-618 Lublin, Poland
autor
- Department of Financial Economics, Accounting and Operations Management at the University of Huelva, Calle Dr. Cantero Cuadrado, 6, 21004 Huelva, Spain
Bibliografia
- 1. Baker J. The role of environment in marketing services: the consumer perspective. In: Czpeil J, Congram C, Shanaham J, editors. The services marketing challenge: Integrated for competitive advantage. Chicago: American Marketing Association; 1986; 79–84.
- 2. Olahuf M. Store atmosphere: Conceptual Issues and Its Impact on Shopping Behavior. In 2012.
- 3. Zalewska M. Sensory Merchandising. In: Grzegorczyk A, Wiśniewska A, editors. Merchandising. Warszawa: Wyższa Szkoła Promocji; 2014.
- 4. Frasquet M, Ieva M, Mollá-Descals A. Customer inspiration in retailing: The role of perceived novelty and customer loyalty across offline and online channels. Journal of Retailing and Consumer Services. 2024 Jan; 76: 103592.
- 5. Verma A. Factors affecting the growth of e-shopping consumers over traditional shopping after Covid-19: GCC Countries’ Perspective. J Professional Business Review. 2024 Jan 18; 9(1): e04169.
- 6. Szász L, Bálint C, Csíki O, Nagy BZ, Rácz BG, Csala D, Harris L.C. The impact of COVID-19 on the evolution of online retail: The pandemic as a window of opportunity. Journal of Retailing and Consumer Services. 2022 Nov; 69: 103089.
- 7. Zielińska A, Koy N. Music as a tool for creating customer experience in retail. MMR [Internet]. 2017 [cited 2024 Jul 8]; Available from: http://doi.prz.edu.pl/pl/publ/zim/317
- 8. Krishna A, Cian L, Sokolova T. The power of sensory marketing in advertising. Current Opinion in Psychology. 2016 Aug; 10: 142–7.
- 9. Sowier-Kasprzyk I. Impact of sensory marketing on customer loyalty and purchase decisions.. Zeszyty Naukowe Wyższej Szkoły Humanitas Zarządzanie. 2022 Sep 30; 23(3): 73–85.
- 10. Bojanowska A, Dadacz P. Music and Purchasing Decisions.. In: Bojanowska A, editor. Marketing through the eyes of young scientistsLublin: Wydawnictwo Politechniki Lubelskiej; 2023; 31–41.
- 11. Todd NPM, Cody FW. Vestibular responses to loud dance music: A physiological basis of the “rock and roll threshold”? The Journal of the Acoustical Society of America. 2000 Jan 1; 107(1): 496–500.
- 12. Sunaga T. How the sound frequency of background music influences consumers’ perceptions and decision making. Psychology and Marketing. 2018 Apr; 35(4): 253–67.
- 13. Azis Y, Susanti S, Triana A. Application of regression analysis in reviewing the effect of store atmosphere on the purchase decision process. 2019; 1(3): 1–11.
- 14. Madjid R. The Influence Store Atmosphere Towards Customer Emotions and Purchase Decisions. 2014; 3: 11–9.
- 15. Occupational Safety and Health Administration [Internet]. Available from: https://www.osha.gov/laws-regs/standardinterpretations/2003-02-24
- 16. Regulation of the Minister of Labour and Social Policy of 26 September 1997 on general occupational health and safety regulations.Dz.U. 1997 nr 129 poz. 844.
- 17. Pierański B. The quality of commercial services offered by hypermarkets in Poland (results of empirical research).2011; 3(332).
- 18. Hussain R, Ali M. Effect of store atmosphere on consumer purchase intention. SSRN Journal [Internet]. 2015 [cited 2024 Jul 14]; Available from: https://www.ssrn.com/abstract=2588411
- 19. Gokcen O. In-Store Customer Experience and Customer Emotional State in the Retail Industry. 2018; 32.
- 20. Kurniawan P, Ali Jufri, Santika Gumilang, Tedi Kustandi. Purchase decision: The role of store atmosphere and product quantity.. DIJMS. 2022 Jul 11; 3(6): 1096–105.
- 21. Mitchell TM. Machine learning. New York: McGraw-Hill; 1997.
- 22. Topór T. Machine Learning for oil and gas exploration: The Era of Machine Learning. 2021; 16.
- 23. Murdoch WJ, Singh C, Kumbier K, Abbasi-Asl R, Yu B. Interpretable machine learning: definitions, methods, and applications. 2019 [cited 2024 Jul 18]; Available from: https://arxiv.org/abs/1901.04592
- 24. Topór T, Sowiżdżał K, Instytut Nafty i Gazu – Państwowy Instytut Badawczy. Application of machine learning tools for seismic reservoir characterization study of porosity and saturation type. NG. 2022 Mar; 78(3): 165–75.
- 25. Chen M, Hao Y, Hwang K, Wang L, Wang L. Disease prediction by machine learning over big data from healthcare communities. IEEE Access. 2017; 5: 8869–79.
- 26. Abbasi B, Babaei T, Hosseinifard Z, Smith-Miles K, Dehghani M. Predicting solutions of large-scale optimization problems via machine learning: A case study in blood supply chain management. Computers & Operations Research. 2020 Jul; 119: 104941.
- 27. Kulisz M, Antosz K, Kozłowski E. Integration of statistical analysis and machine learning techniques for enhanced quality control in candle oil cartridge manufacturing. In: Ivanov V, Trojanowska J, Pavlenko I, Rauch E, Piteľ J, editors. Advances in Design, Simulation and Manufacturing VII [Internet]. Cham: Springer Nature Switzerland; 2024 [cited 2024 Aug 22]. 376–87. (Lecture Notes in Mechanical Engineering). Available from: https://link.springer.com/10.1007/978-3-031-61797-3_32
- 28. Kluz R, Antosz K, Trzepieciński T, Bucior M. Modelling the influence of slide burnishing parameters on the surface roughness of shafts made of 42CrMo4 heattreatable steel. Materials. 2021 Mar 2; 14(5): 1175.
- 29. Singh A, Wiktorsson M, Hauge JB. Trends in machine learning to solve problems in logistics. Procedia CIRP. 2021; 103: 67–72.
- 30. Kulisz M, Kujawska J, Aubakirova Z, Wojtas E. Prediction of river salinity with artificial neural networks. J Phys: Conf Ser. 2023 Dec 1; 2676(1): 012004.
- 31. Awtoniuk M, Majerek D, Myziak A, Gajda C. Industrial application of deep neural network for aluminum casting defect detection in case of unbalanced dataset. Adv Sci Technol Res J. 2022 Nov 1; 16(5): 120–8.
- 32. Szala M, Awtoniuk M, Łatka L, Macek W, Branco R. Artificial neural network model of hardness, prosity and cavitation erosion wear of APS deposited Al2O3 -13 wt% TiO2 coatings. J Phys: Conf Ser. 2021 Jan 1; 1736(1): 012033.
- 33. Szala M, Awtoniuk M. Neural modelling of cavitation erosion process of 34CrNiMo6 steel. IOP Conf Ser: Mater Sci Eng. 2019 Dec 1; 710(1): 012016.
- 34. Pallathadka H, Mustafa M, Sanchez DT, Sekhar Sajja G, Gour S, Naved M. Impact of machine learning on Management, healthcare and agriculture. Materials Today: Proceedings. 2023; 80: 2803–6.
- 35. Fahreza M, Rahayu A, Hendrayati H. Analysis of the role of store atmosphere in influencing consumer purchasing decisions at XYZ cooperative. ijbesd.2024 Feb 29; 5(1): 111–9.
- 36. Fernando F, Djunaid IS. Pengaruh store atmosphere terhadap minat beli konsumen pada rumah makan Hawaii, Sanggau Kalimantan Barat. reslaj. 2023 Sep 4; 6(3): 1114–29.
- 37. Dahrouj H, Alghamdi R, Alwazani H, Bahanshal S, Ahmad AA, Faisal A, Shalabi R, Alhadrami R, Subasi A, Al-Nory MT, Kittaneh O, and Shammaet JS. An overview of machine learning-based techniques for solving optimization problems in communications and signal processing. IEEE Access. 2021; 9: 74908–38.
- 38. Chun CY, Tamura A. Thermal environment and human responses in underground shopping malls vs department stores in Japan. Building and Environment. 1998 Mar; 33(2–3): 151–8.
- 39. Srdoč A, Bratko I, Sluga A. Machine learning applied to quality management—A study in ship repair domain. Computers in Industry. 2007 Jun; 58(5): 464–73.
- 40. Novakovic´ JD, Veljović A, Ilić SS, Papić Ź, Tomović M. Evaluation of classification models in machine learning. 2017; 7(1).
- 41. Kotsiantis SB, Zaharakis ID, Pintelas PE. Machine learning: a review of classification and combining techniques. Artif Intell Rev. 2006 Nov; 26(3): 159–90.
- 42. Martinez-Garcia A, Martinez-Lopez FJ, Garcia-Ordaz M, Infante-Moro A, Infante-Moro JC, Gallardo-Perez J, Guerrero-Romera C. The penetration of learning management systems (LMS) in Virtual Campuses in Spanish companies and institutions: a comparative analysis with videoconferences. In: 2022 XII International Conference on Virtual Campus (JICV) [Internet]. Arequipa, Peru: IEEE; 2022 [cited 2024 Jul 8]. 1–3. Available from: https://ieeexplore.ieee.org/document/9934650/
- 43. Malik A, Dargar G, Sharma A, Pandey P. Predictive Analysis for Retail Shops using Machine Learning for Maximizing Revenue. In: 2023 7th International Conference on Intelligent Computing and Control Systems (ICICCS) [Internet]. Madurai, India: IEEE; 2023 [cited 2024 Aug 23]. 126–33. Available from: https://ieeexplore.ieee.org/document/10142634/
- 44. Karande S, Kolpe S, Korbad G, Komatwar O, Adki R. Leveraging data science and machine learning for enhanced retail operations. International Journal of Innovative Science and Research Technology (IJISRT). 2024 Apr 6; 2205–11.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b70b516-0012-4cb0-982e-4fdf5191361c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.