Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Weather-related hazards are already among the factors most frequently causing disturbances for railways. Flooding and storm are considered major threats to the system. Climate change might in the long run produce new kinds of hazards and threats to the railway system, but the climate change will principally involve a strengthening of the already known threats, in terms of increased frequency as well as increased intensity. Based on examples of natural hazards’ impact on railways, possible approaches of vulnerability assessment are described which could also address potential consequences of climate change. In order to reduce the effects of weather hazards technical countermeasures are necessary, but also an appropriate risk management as, e.g., required for flooding in the European Union.
Słowa kluczowe
Rocznik
Tom
Strony
1--12
Opis fizyczny
Bibliogr. 35 poz., rys., wykr.
Twórcy
autor
- Formerly Bundesamt für Entsorgungssicherheit, Salzgitter, Germany
Bibliografia
- [1] Baker, C.J., Chapman L., Quinn, A. & Dobney, K. (2010). Climate change and the railway industry: a review. J Mech Eng Sci. 224, Issue 3, 519–528.
- [2] Cheetham, M., Chirouze, F. & Bredier, L. (2016). RISK VIP: Evaluation of Flood Risk on the French Railway Network Using an Innovative GIS Approach. 3rd European Conference on Flood Risk Management (FLOODrisk 2016). Article Number 10004.
- [3] Constable, L. (2016). Vision for a safe and resilient railway. Network Rail.
- [4] Dawson, D., Shaw, J. & Gehrels, W.R. (2016). Sea-level rise impacts on transport infrastructure: The notorious case of the coastal railway line at Dawlish, England. Journal of Transport Geography 5, 97–109.
- [5] Deutsche Bahn (2013). Wieder freie Fahrt zwischen Hannover und Berlin. Press Release of 4 November 2013, (in German).
- [6] Deutsche Bahn (2014). Wettbewerbsbericht 2014. (in German).
- [7] Doll, C., Klug, S., Kohler, J., Partzsch, I., Enei, R., Pelikan, V., Sedlacek, N., Maurer, H., Rudzikaite, L., Papanikolaou, A. & Mitsakis, V. (2011). Adaptation Strategies in the Transport Sector. WEATHER Deliverable 4. EC FP7. Fraunhofer ISI, Karlsruhe.
- [8] Doll, C., Trinks, C., Sedlacek, N., Pelikan, V., Comes, T. & Schultmann, F. (2013). Adapting rail and road networks to weather extremes: case Berg Heinz-Peter Risks and consequences of weather hazards on railway infrastructures studies for southern Germany and Austria. Nat Hazards, DOI 10.1007/s11069-013-0969-3.
- [9] Durga Rao, K.H.V., Shravya, A., Venkateshwar Rao, V., Dadhwal, V.K. & Diwakar, P.G. (2017). Flash flood disaster threat to Indian rail bridges: a spatial simulation study of Machak River flood, Madhya Pradesh. Current Science 112, No. 5, 1028–1033.
- [10] Enei, R., Doll, C., Sedlacek, N., Kiel, J., Nesterova, N., Rudzikaite, L., Papanikolaou, A. & Mitsakis, V. (2011). Vulnerability of Transport Systems. WEATHER Deliverable 2. EC FP7. Fraunhofer ISI, Karlsruhe.
- [11] European Union (2007). Directive 2007/60/EC of the European parliament and of the Council of 23 October 2007 on the assessment and management of flood risks. Official Journal of the European Union, L 288/27-34.
- [12] FLOODsite (2005). Language of Risk – Project Definitions. Report No. T32-04-01.
- [13] Hackl, J., Adey, B.T., Heitzler, M. & IosifescuEnescu, I. (2015). An overarching risk assessment process to evaluate the risks associated with infrastructure ´networks due to natural hazards. International Journal of Performability Engineering 11, No. 2, 153-168.
- [14] Hong, L., Ouyang, M., Peeta, S., He, X. & Yan, Y. (2015). Vulnerability assessment and mitigation for the Chinese railway system under floods, Reliability Engineering & System Safety 137, 58– 68.
- [15] Intergovernmental Panel on Climate Change. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva, Switzerland.
- [16] International Organization for Standardization. (2009). Risk Management – Principles and Guidelines, ISO 31000:2009.
- [17] Jenelius, E. & Mattsson, L.G. (2012). Road network vulnerability analysis of area-covering disruptions: A grid-based approach with case study. Transportation Research Part A: Policy and Practice. 46, 746-760.
- [18] Kellermann, P., Bubeck, P., Kundela, G., Dosio, A. & Thieken, A.H. (2016). Frequency analysis of critical meteorological conditions in a changing climate -assessing future implications for railway transportation in Austria. Climate 4, 25.
- [19] Koetse, M.J. & Rietveld, P. (2009). The impact of climate change and weather on transport: an overview of empirical findings Transp. Res. Part D: Transp. Environ., 14 (3), 205-221.
- [20] Lindgren, J., Jonsson, D.K. & Carlsson-Kanyama, A. (2009). Climate adaptation of railways: lessons from Sweden. EJTIR 9(2), 164–182.
- [21] Lowe, J.A., Howard, T.P., Pardaens, A., Tinker, J., Holt, J., Wakelin, S., Milne, G., Leake, J., Wolf, J., Horsburgh, K., Reeder, T., Jenkins, G., Ridley, J., Dye, S. & Bradley, S. (2009). UK Climate Projections Science Report: Marine and Coastal Projections. Met Office Hadley Centre, Exeter.
- [22] Maibach, M., Bertmann-Aeppli, D. & Peter, M. (2012). Vulnerability and Adaptation Strategies in Alpine Road and Rail Transport-Swiss Case Study. Report from the International Panel of WEATHER. EC FP7, Zürich.
- [23] Maurer, H., Rudzikaite, L., Kiel, J. et al (2012). WEATHER Case studies. EC FP7. Fraunhofer ISI, Karlsruhe.
- [24] Merz, M., Elmer, F., Kunz, M., Mühr, B., Schröter, K. & Uhlemann-Elmer, S. (2014). The extreme flood in June 2013 in Germany. La Houille Blanche, n°1, 5-10.
- [25] Mizukami, Y. (2012). Natural hazard experiences and countermeasures in Japanese railways. International Conference “Adaptation of Transport Networks to Climate Change, Alexandroupolis, Greece, June 2012.
- [26] Network Rail. (2014). Dawlish Railway. Available at https://www.networkrail.co.uk/timetables-andtravel/storm-damage/dawlish/(accessed in March 2017).
- [27] Pant, R., Hall, J.W. & Blainey, S.P. (2016). Vulnerability assessment framework for interdependent critical infrastructures. EJTIR 16(1), 174-194.
- [28] Rahmstorf, S. (2007). A semi-empirical approach to projecting future sea-level rise. Science 315, 368.
- [29] Rail Safety and Standards Board Limited. (2016). Tomorrow's Railway and Climate Change Adaptation: Executive Report. May 2016.
- [30] Regmi, M.B. & Hanaoka, S. (2009). Impacts of climate change on transport and adaptation in Asia. Proceedings of the Eastern Asia Society for Transportation Studies, Vol 7.
- [31] Sa’adin, S.L.B., Kaewunruen, S. & Jaroszweski, D. (2016). Risks of climate change with respect to the Singapore-Malaysia high speed rail system. Climate 4, 65.
- [32] Sani, G. & Diya, M.B. (2014). Floods in Malaysia: Historical reviews, causes, effects and mitigations approach. Int. J. Interdiscip. Res. Innov. 2, 59–65.
- [33] Schröter, K., Kunz, M., Elmer, F., Mühr, B. & Merz, B. (2015). What made the June 2013 flood in Germany an exceptional event? A hydrometeorological evaluation, Hydrol. Earth Syst. Sci. 19, 309-327.
- [34] Thieken, A.H., Bessel, T., Kienzler, S., Kreibich, H., Müller, M. Pisi, S. & Schröter, K. (2016). The flood of June 2013 in Germany: how much do we know about its impacts? Nat. Hazards Earth Syst. Sci. 16, 1519-1540.
- [35] Uhlemann, S., Thieken, A. H. & Merz, B. (2010). A consistent set of trans-basin floods in Germany between 1952–2002. Hydrol. Earth Syst. Sci. 14, 1277-1295.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b6fea1e-ee2f-4e09-9a91-b14baf4b4898