PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Application of different protocols and age-models in OSL dating of earthen mortars

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, OSL dating was applied to earthen mortars, consisting in a quartz-rich aggregate dispersed in silty-clayey matrix. The samples were taken from two independently dated structures in Cremona, Northern Italy (Palazzo Raimondi, 1495–1499 AD and Palazzo Soldi, 1770–1790 AD). The evaluation of the equivalent dose (De) was attempted with both the multigrain and the single grain protocols using the 150–250 μm quartz fraction. The reliability and effectiveness of the various statistical methods in identifying the well-bleached samples were tested. The use of the multi-grain technique gave unreliable results, due to the high amount of poorly bleached grains. With the single-grain technique, more promising results were obtained: in particular, the un-log MAM3 and IEU models allowed an accurate evaluation of the mortar expected age in most cases, even if the precision is still relatively low.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Strony
341--351
Opis fizyczny
Bibliogr. 45 poz., rys.
Twórcy
autor
  • Dipartimento di Scienza dei Materiali, Università degli studi di Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
  • INFN, Sezione di Milano-Bicocca, piazza della Scienza 3, 20126 Milano, Italy
autor
  • Dipartimento di Scienze della Terra e dell’Ambiente, Università di Pavia, via Ferrata 1, 27100 Pavia, Italy
autor
  • Dipartimento di Scienza dei Materiali, Università degli studi di Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
  • INFN, Sezione di Milano-Bicocca, piazza della Scienza 3, 20126 Milano, Italy
autor
  • Dipartimento di Scienza dei Materiali, Università degli studi di Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
  • INFN, Sezione di Milano-Bicocca, piazza della Scienza 3, 20126 Milano, Italy
Bibliografia
  • 1. Aitken MJ, 1985. Thermoluminescence dating. Academic Press, London.
  • 2. Aitken MJ, 1998. An Introduction to Optical Dating. Oxford University Press.
  • 3. Arnold LJ, Roberts RG, Galbraith RF and DeLong SB, 2009. A revised burial dose estimation procedure for optical dating of young and modern-age sediments. Quaternary Geochronology4: 306–325.
  • 4. Aubert JE, Marcom A, Oliva P and Segui P, 2015. Chequered earth construction in south-western France. Journal of Cultural Heritage16: 293–298.
  • 5. Bell, 1979. Attenuation factors to absorbed dose in quartz inclusions for thermoluminescence dating. Ancient TL8: 2–13.
  • 6. Bonazzi A and Fieni L, 1995. Uso e fortuna delle malte d'argilla nell'Italia Settentrionale: prime ricerche su Cremona. TeMa Tempo Materia Architettura1: 44–53.
  • 7. Bøtter-Jensen L, Andersen CE, Duller GAT and Murray AS, 2003. Developments in radiation, stimulation and observation facilities in luminescence measurements. Radiation Measurements37: 535–541.
  • 8. Bøtter-Jensen L and Murray AS, 2002. Optically stimulated luminescence in retrospective dosimetry. Radiation Protection Dosimetry101: 309–314.
  • 9. Cantù M, Giacometti F, Landi A, Riccardi MP, Tarantino SC and Grimoldi A, 2016. Earthen mortars from Cremona (Northern Italy): the evolution throughout centuries of a manufacturing tradition. Construction and Building Materials125: 520–532.
  • 10. Cantù M, Giacometti F, Landi AG, Riccardi MP, Tarantino SC and Grimoldi A, 2015. Characterization of XVIIIth century earthen mortars from Cremona (Northern Italy): Insights on a manufacturing tradition. Materials Characterization103: 81–89.
  • 11. Duller GAT, 2003. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements37: 161–165.
  • 12. Duller GAT, Bøtter-Jensen L and Murray AS, 2000. Optical dating of single sand-sized grains of quartz: Sources of variability. Radiation Measurements32: 453–457.
  • 13. Fieni L, 1999. Approfondimenti metodologici e tecnologici per lo studio delle malte di terra: l'esempio dei manufatti cremonesi. Archeologia dell'architettura. Supplemento ad Archeologia medievaleXXV 4: 9–28.
  • 14. Fratini F, Pecchioni E, Rovero L and Tonietti U, 2011. The earth in the architecture of the historical centre of Lamezia Terme (Italy): Characterization for restoration. Applied Clay Science53: 509–516.
  • 15. Galbraith RF, Roberts RG, Laslett GM, Yoshida H and Olley JM, 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part I, experimental design and statistical models. Archaeometry41: 339–364.
  • 16. Galli A, Martini M, Maspero F, Panzeri L and Sibilia E, 2014. Surface dating of bricks, an application of luminescence techniques. The European Physical Journal- Plus 129: 101–109.
  • 17 Goedicke C, 2003. Dating historical calcite mortar by blue OSL: Results from known age samples. Radiation Measurements37:409–415.
  • 18. Goedicke C, 2011. Dating mortar by optically stimulated luminescence: A feasibility study. Geochronometria38: 42–49.
  • 19. Guérin G, Mercier N and Adamiec G, 2011. Dose-rate conversion factors: Update. Ancient TL29: 5–8.
  • 20. Hale J, Heinemeier J, Lancaster L, Lindroos A and Ringbom Å, 2003. Dating ancient mortars. American Scientist91: 130–137.
  • 21. Heinemeier J, Jungner H, Lindroos A, Ringbom A, Von Konow T and Niels R, 1997. AMS 14C dating of lime mortar.Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms123: 487–495.
  • 22. Jain M, Thomsen KJ, Bøtter-Jensen L and Murray AS, 2004. Thermal transfer and apparent-dose distributions in poorly bleached mortar samples: Results from single grains and small aliquots of quartz. Radiation Measurements38: 101–109.
  • 23. Konow T and Lindroos A, 1997. Dating of lime mortar – Preparation of the sample, a challenge for the geologist and the mineral chemist. Iskos11: 208–213.
  • 24. Lapp T, Jain M, Thomsen KJ and Murray AS, 2012. New luminescence measurement facilities in retrospective dosimetry.Radiation Measurements47: 803–808.
  • 25. Lindroos A, Orsel E, Heinemeier J, Lill JO and Gunnelius K, 2014. Radiocarbon dating of Dutch mortars made from burned shells. Radiocarbon56: 959–968.
  • 26. Lubritto C, Caroselli M, Lugli S, Marzaioli F, Nonni S, Marchetti Dori S and Terrasi F, 2015. AMS radiocarbon dating of mortar: The case study of the medieval UNESCO site of Modena. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms361: 614–619.
  • 27. Martini M and Sibilia E, 2006. Absolute dating of historical buildings: the contribution of thermoluminescence (TL). Journal of Neutron Research14: 69–74.
  • 28. Medialdea A, Thomsen KJ, Murray AS and Benito G, 2014. Reliability of equivalent-dose determination and age-models in the OSL dating of historical and modern palaeoflood sediments. Quaternary Geochronology22: 11–24.
  • 29. Mejdahl V, 1985. Thermoluminescence dating based on feldspars. Nuclear Tracks and Radiation Measurements (1982)10: 133–136.
  • 30. Murray AS and Roberts RG, 1997. Determining the burial time of single grains of quartz using optically stimulated luminescence. Earth and Planetary Science Letters152: 163–180.
  • 31. Murray AS and Wintle AG, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements32: 57–73.
  • 32. Murray AS and Wintle AG, 2003. The single aliquot regenerative dose protocol: Potential for improvements in reliability.Radiation Measurements37: 377–381.
  • 33. Panzeri L, 2013. Mortar and surface dating with Optically Stimulated Luminescence (OSL): Innovative techniques for the age determination of buildings. Il nuovo cimento4: 205–216.
  • 34. Pesce GLA, Ball RJ, Quarta G and Calcagnile L, 2012. Identification, extraction, and preparation of reliable lime samples for 14C dating of plasters and mortars with the “pure lime lumps” technique. Radiocarbon54: 933–942.
  • 35. Prescott JR and Hutton JT, 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Radiation Measurements23: 497–500.
  • 36. Preusser F, Degering D, Fuchs M, Hilgers A, Kadereit A, Klasen N, Krbetschek M, Richter D and Spencer JQG, 2008. Luminescence dating: basics, methods and applications. Quaternary Science Journal57: 95–149.
  • 37. Ringbom Å, 1997. The churches of the Åland islands and 14C dating of mortar, Method and theory in Historical Archaeology, Medieval Europe Brugge: pp. 103–122.
  • 38. Ringbom Å, Lindroos A, Heinemeier J and Sonck-Koota P, 2014. 19 years of mortar dating: Learning from experience.Radiocarbon56: 619–635.
  • 39. Thomsen KJ, Jain M, Bøtter-Jensen L, Murray AS and Jungner H, 2003. Variation with depth of dose distributions in single grains of quartz extracted from an irradiated concrete block. Radiation Measurements37: 315–321.
  • 40. Thomsen KJ, Murray A and Jain M, 2012. The dose dependency of the over-dispersion of quartz OSL single grain dose distributions. Radiation Measurements47: 732–739.
  • 41. Thomsen KJ, Murray AS, Bøtter-Jensen L and Kinahan J, 2007. Determination of burial dose in incompletely bleached fluvial samples using single grains of quartz. Radiation Measurements42: 370–379.
  • 42. Urbanová P, Hourcade D, Ney C and Guibert P, 2015. Sources of uncertainties in OSL dating of archaeological mortars: The case study of the Roman amphitheatre “palais-Gallien” in Bordeaux. Radiation Measurements72: 100–110.
  • 43. Urbanová P and Guibert P, 2017. Methodological study on single grain OSL dating of mortars: Comparison of five reference archaeological sites. Geochronometria44: 77–97.
  • 44. Wintle AG and Murray AS, 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements41: 369–391, .
  • 45. Zacharias N, Mauz B, Michael CT, Horowitz YS and Oster L, 2002. Luminescence quartz dating of lime mortars. A first research approach. Radiation Protection Dosimetry101: 379–382.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b6d0979-678d-4dce-8d88-b938971947e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.