Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The frequent occurrence of threats from various airborne biological factors has led to a significant increase in experimental research on bioaerosols in recent years. One of the key areas of interest for researchers in this field are microorganisms present in enclosed spaces, both suspended in indoor air and settled on surfaces. A common feature of all these experiments in the initial stage of the investigation is the simulation of basic phenomena related to bioaerosols based on closed experimental systems. During this type of research, a crucial preliminary step that significantly impacts the quality of biological research results is the process of ensuring the appropriate microbiological purity of the experimental cells. The filtration methods currently used for indoor air purification in chambers do not effectively remove microorganisms from surfaces, especially in difficult to reach areas. Microorganisms settled on surfaces are detached because of air movement in the chamber and can reform bioaerosol. Therefore, for many years, research has been aimed at developing an effective technique for decontaminating air and surfaces in enclosed spaces. In recent years, there has been a development of chemical disinfection techniques based on the generation of fog from biocidal agents. The paper presents selected results of original research, demonstrating that the decontamination of experimental chambers for bioaerosol studies using dry fog generated from hypochlorous acid (HOCl) at a concentration of 300 ppm allows a high degree of microbiological purity before biological experiments and does not pose a threat to human health. Furthermore, the use of HOCl-generated dry fog as a method to decontaminate experimental chambers and laboratory spaces can also reduce the threat posed by biological agents to research personnel and protect against the contamination of the surrounding environment.
Rocznik
Tom
Strony
71--80
Opis fizyczny
Bibliogr. 34 poz., rys., wykr.
Twórcy
autor
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
autor
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
- Military University of Technology, Institute of Optoelectronics, Warsaw, Poland
Bibliografia
- 1. Agranovski, V., Ristovski, Z., Hargreaves, M., Blackall, P. J., and Morawska, L. (2003). Performance evaluation of the UVAPS: influence of physiological age of airborne bacteria and bacterial stress. Journal of Aerosol Science, 34(12), 1711-1727. https://doi.org/10.1016/S0021-8502(03)00191-5
- 2. Alimova, A., Roberts, M., Katz, A., Rudolph, E., Steiner, J. C., Alfano, R. R., and Gottlieb, P. (2006). Effects of smectite clay on biofilm formation by microorganisms. Biofilms, 3(1), 47-54. https://doi.org/10.1017/S1479050507002128
- 3. Andersen, A. A. (1958). New sampler for the collection, sizing, and enumeration of viable airborne particles. Journal of bacteriology, 76(5), 471-484. https://doi.org/10.1128%2Fjb.76.5.471-484.1958
- 4. Ayub, A., Cheong, Y. K., Castro, J. C., Cumberlege, O., and Chrysanthou, A. (2024). Use of Hydrogen Peroxide Vapour for Microbiological Disinfection in Hospital Environments: A Review. Bioengineering, 11(3), 205. https://doi.org/10.3390/bioengineering11030205
- 5. Buttner, M. P., Cruz-Perez, P., and Stetzenbach, L. D. (2001). Enhanced detection of surface-associated bacteria in indoor environments by quantitative PCR. Applied and Environmental Microbiology, 67(6), 2564-2570. https://doi.org/10.1128/aem.67.6.2564-2570.2001
- 6. Cheng, Y. S. (1999). Detection of bioaerosols using multiwavelength UV fluorescence spectroscopy. Aerosol Science and Technology, 30(2), 186-201. https://doi.org/10.1080/027868299304778
- 7. da Cruz Nizer, W. S., Inkovskiy, V., and Overhage, J. (2020). Surviving reactive chlorine stress: responses of gram-negative bacteria to hypochlorous acid. Microorganisms, 8(8), 1220. https://doi.org/10.3390/microorganisms8081220
- 8. Deloge-Abarkan, M., Ha, T. L., Robine, E., Zmirou-Navier, D., and Mathieu, L. (2007). Detection of airborne Legionella while showering using liquid impingement and fluorescent in situ hybridization (FISH). Journal of Environmental Monitoring, 9(1), 91-97. https://doi.org/10.1039/B610737K
- 9. Doussin, J. F., Fuchs, H., Kiendler-Scharr, A., Seakins, P., and Wenger, J. (2023). A Practical Guide to Atmospheric Simulation Chambers (p. 339). Springer Nature. https://library.oapen.org/handle/20.500.12657/62970
- 10. Duchaine, C. (2016). Assessing microbial decontamination of indoor air with particular focus on human pathogenic viruses. American Journal of Infection Control, 44(9), S121-S126. https://doi.org/10.1016/j.ajic.2016.06.009
- 11. Dutt, D. L., Turetsky, A. L., Brickhouse, M., Pfarr, J. W., McVey, I. F., Meilander, S. L., and Dallmier, A. W. (2004). Effectiveness of vaporous hydrogen peroxide for the decontamination of representative military materials. In Poster FP10, 24th Army Science Conference Proceedings. https://apps.dtic.mil/sti/citations/ADA449628
- 12. Finnegan, M., Linley, E., Denyer, S. P., McDonnell, G., Simons, C., and Maillard, J. Y. (2010). Mode of action of hydrogen peroxide and other oxidizing agents: differences between liquid and gas forms. Journal of Antimicrobial Chemotherapy, 65(10), 2108-2115. https://doi.org/10.1093/jac/dkq308
- 13. Fukuzaki, S. (2023). Uses of gaseous hypochlorous acid for controlling microorganisms in indoor spaces. Journal of Microorganism Control, 28(4), 165-175. https://doi.org/10.4265/jmc.28.4_165
- 14. Gökçe, O. N., Çetin, K., Taş, Ş., Alkan, S., and Dinç, U. (2023). Hypochlorous Acid: A Novel Agent Against Echinococcus granulosus Protoscoleces. Infectious Diseases and Clinical Microbiology, 5(2), 158. https://doi.org/10.36519%2Fidcm.2023.238
- 15. Griffin, D. W. (2007). Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clinical microbiology reviews, 20(3), 459-477. https://doi.org/10.1128%2FCMR.00039-06
- 16. Heidelberg, J. F., Shahamat, M., Levin, M., Rahman, I., Stelma, G., Grim, C., and Colwell, R. R. (1997). Effect of aerosolization on culturability and viability of gram-negative bacteria. Applied and Environmental Microbiology, 63(9), 3585-3588. https://doi.org/10.1128%2Faem.63.9.3585-3588.1997
- 17. Horve, P. F., Dietz, L., Northcutt, D., Stenson, J., and Van Den Wymelenberg, K. (2021). Evaluation of a bioaerosol sampler for indoor environmental surveillance of Severe Acute Respiratory Syndrome Coronavirus 2. PLoS One, 16(11), e0257689. https://doi.org/10.1371/journal.pone.0257689
- 18. Lewandowski, R., Kozłowska, K., Szpakowska, M., Stępińska, M., and Trafny, E. A. (2010). Use of a foam spatula for sampling surfaces after bioaerosol deposition. Applied and Environmental Microbiology, 76(3), 688-694. https://doi.org/10.1128%2FAEM.01849-09
- 19. Lewandowski, R. B., Stępińska, M., Osuchowski, Ł., Kasprzycka, W., Dobrzyńska, M., Mierczyk, Z., and Trafny, E. A. (2024). The HOCl dry fog–is it safe for human cells?. Plos one, 19(5), e0304602. https://doi.org/10.1371/journal.pone.0304602
- 20. Lighthart, B. (1997a). The ecology of bacteria in the alfresco atmosphere. FEMS microbiology ecology, 23(4), 263-274. https://doi.org/10.1111/j.1574-6941.1997.tb00408.x
- 21. Lighthart, B., and Shaffer, B. T. (1997b). Increased airborne bacterial survival as a function of particle content and size. Aerosol Science and Technology, 27(3), 439-446. https://doi.org/10.1080/02786829708965483
- 22. Macher, J., Chen, B., and Rao, C. (2008). Chamber evaluation of a personal, bioaerosol cyclone sampler. Journal of Occupational and Environmental Hygiene, 5(11), 702-712. https://doi.org/10.1080/15459620802380351
- 23. Marthi, B., Fieland, V. P., Walter, M., and Seidler, R. J. (1990). Survival of bacteria during aerosolization. Applied and environmental microbiology, 56(11), 3463-3467. https://doi.org/10.1128%2Faem.56.11.3463-3467.1990
- 24. McEvoy, B., and Rowan, N. J. (2019). Terminal sterilization of medical devices using vaporized hydrogen peroxide: a review of current methods and emerging opportunities. Journal of applied microbiology, 127(5), 1403-1420. https://doi.org/10.1111/jam.14412
- 25. Mostak, P. (2008). Chemistry and properties of liquid explosives. In: Detection of Liquid Explosives and Flammable Agents in Connection with Terrorism (pp. 15-25). Springer Netherlands. http://dx.doi.org/10.1007/978-1-4020-8466-9
- 26. Norkaew, S., Narikawa, S., Nagashima, U., Uemura, R., and Noda, J. (2024). Efficacy of treating bacterial bioaerosols with weakly acidic hypochlorous water: A simulation chamber study. Heliyon, 10(5). https://doi.org/10.1016/j.heliyon.2024.e26574
- 27. Paton, S., Thompson, K. A., Parks, S. R., and Bennett, A. M. (2015). Reaerosolization of spores from flooring surfaces to assess the risk of dissemination and transmission of infections. Applied and Environmental Microbiology, 81(15), 4914-4919. https://doi.org/10.1128/aem.00412-15
- 28. Polska Norma PN-EN 12128:2000, Laboratoria badawcze, rozwoju i analizy. Stopnie hermetyczności laboratoriów mikrobiologicznych, strefy ryzyka i wymagania względem lokalizacji i bezpieczeństwa fizycznego.
- 29. Polska Norma PN-EN 12469:2002, Biotechnologia. Kryteria działania komór bezpiecznej pracy mikrobiologicznej.
- 30. Rogers, J. V., Sabourin, C. L. K., Choi, Y. W., Richter, W. R., Rudnicki, D. C., Riggs, K. B., and Chang, J. (2005). Decontamination assessment of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surfaces using a hydrogen peroxide gas generator. Journal of applied microbiology, 99(4), 739-748. https://doi.org/10.1111/j.1365-2672.2005.02686.x
- 31. Roszak, D. B., and Colwell, R. (1987). Survival strategies of bacteria in the natural environment. Microbiological reviews, 51(3), 365-379. https://doi.org/10.1128%2Fmr.51.3.365-379.1987
- 32. Rutala, W. A., Boyce J. M., and Weber, D. J. (2023). Disinfection, sterilization, and antisepsis: an overview. American journal of infection control, 51(11S):A3-A12. https://doi.org/10.1016/j.ajic.2023.01.001
- 33. Thomas, R. J., Webber, D., Sellors, W., Collinge, A., Frost, A., Stagg, A. J., and Titball, R. W. (2008). Characterization and deposition of respirable large-and small-particle bioaerosols. Applied and environmental microbiology, 74(20), 6437-6443. https://doi.org/10.1128%2FAEM.01194-08
- 1. Wirtanen, G., and Salo, S. (2003). Disinfection in food processing–efficacy testing of disinfectants. Reviews in Environmental Science and Biotechnology, 2, 293-306. http://dx.doi.org/10.1023/B:RESB.0000040471.15700.03
Uwagi
1. This research was partially funded by the Polish National Centre for Research and Development, contract no. DOB-SZAFIR/02/A/002/02/2021; the project entitled “Mobile disinfection system for medical support of the Polish Armed Forces in counteracting SARS-CoV-2”.
2. Błędna numeracja bibliografii.
3. Błędne oznaczenie afiliacji autorów w pliku. Afiliacja dodana na podstawie informacji ze strony internetowej numeru czasopisma.
4. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b69247f-077a-4cf1-a9bd-abc703a383f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.