PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of MCPA on soil ecotoxicity and the presence of genes involved in its biodegradation

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena wpływu MCPA na fitotoksyczność gleby oraz obecność genów biorących udział w procesach jego biodegradacji
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to evaluate the changes in ecotoxicity of agricultural soil under the influence of Agritox 500SL, an herbicide from the phenoxyacid group, containing MCPA (2-methyl-4-chlorophenoxyacetic acid), applied every 3 weeks for 3 months. Biodegradation potential in control and weathered soil was confirmed by the analysis of the functional gene tfdA using PCR technique. Properties of the soil were assessed by the analysis of granulometric composition, pH, the content of macroelements and heavy metals. The soil ecotoxicity was measured using biotests Phytotoxkit® and Microtox®. The content of Ni (70 mg/kg) and Cr (21 mg/kg) was especially high in the soil with Agritox 500SL. The highest toxic effect for test organisms was observed in freshly spiked soil: 99% L. sativum, 97% S. alba, 66% S. saccharatum (% root growth inhibition) and 76% V. fischeri (% luminescence inhibition). Weathering processes signifi cantly decreased the soil ecotoxicity being 36%, 34% and 3% for V. fischerii, S. alba and L. sativum, respectively. S. saccharatum showed 12% stimulation of the root length. Molecular analysis confirmed the potential of indigenous soil bacteria to biodegrade MCPA by the presence of tfdAα and tfdA Class III genes in the studied soil. The obtained results proved that either MCPA and residues of its decomposition or additional supporting substances in Agritox 500 SL, can influence enhanced soil ecototoxicity. The presence of functional tfdA genes in both: control and weathered soil, confirmed the high potential of indigenous soil bacteria to degrade MCPA.
PL
Celem przeprowadzonych badań była ocena zmian ekotoksyczności gleby rolniczej zanieczyszczonej środkiem ochrony roślin Agritox 500SL, zawierającym herbicyd z grupy fenoksykwasów MCPA (kwas 2-metylo-4-chlorofenoksyoctowy). Herbicyd był dodawano do gleby co 3 tygodnie przez okres 3 miesięcy. Potencjał biodegradacyjny gleby niezanieczyszczonej oraz gleby z dodatkiem MCPA, sprawdzono badając obecność genów funkcyjnych tfdA z wykorzystaniem techniki PCR. Dodatkowo zbadano właściwości gleby takie jak: skład granulometryczny, pH oraz zawartość makroelementów i metali ciężkich. Ekotoksyczność gleby oznaczono przy użyciu testów toksyczności Phytotoxkit® i Microtox®. Stężenie Ni (70 mg/kg) i Cr (21 mg/kg) było szczególnie wysokie w glebie z dodatkiem MCPA. Najwyższą ekotoksyczność zaobserwowano w glebie świeżo zanieczyszczonej herbicydem, gdzie wynosiła ona: 99% dla L. sativum, 97% dla S. alba, 66% dla S. saccharatum (% inhibicja wzrostu korzeni) i 76% dla V. fi scheri (% inhibicja luminescencji). Zachodzące w czasie inkubacji przemiany herbicydu przyczyniły się do zmniejszenia ekotoksyczności gleby do 36%, 34% i 3% odpowiednio dla V. fischerii, S. alba i L. sativum; natomiast w przypadku S. saccharatum zaobserwowano 12% stymulację wzrostu korzeni. Analizy molekularne tj. detekcja fragmentów genów tfdAα i tfdA klasy III, potwierdziły potencjał bakterii obecnych w glebie rolniczej do degradacji MCPA. Uzyskane wyniki potwierdzają że MCPA oraz produkty jego dekompozycji jak również substancje dodawane do komercyjnych środków ochrony roślin mogą przyczynić się do wzrostu ekotoksyczności gleby. Obecność genów funkcyjnych tfdA zarówno w glebie niezanieczyszczonej jak i zanieczyszczonej herbicydem, wskazuje na potencjał degradacyjny bakterii glebowych pod kątem usuwania z gleby herbicydów z grupy fenoksykwasów takich jak MCPA.
Rocznik
Strony
58--64
Opis fizyczny
Bibliogr.31 poz., rys., tab., wykr.
Twórcy
  • University of Lodz, Poland, Faculty of Biology and Environmental Protection, Department of Applied Ecology
autor
  • University of Agriculture in Krakow, Poland, Faculty of Agriculture and Economics, Department of Agricultural and Environmental Chemistry
autor
  • University of Lodz, Poland, Faculty of Biology and Environmental Protection, Department of Applied Ecology
  • European Regional Centre for Ecohydrology, Polish Academy of Sciences, Poland
Bibliografia
  • 1. Bælum, J., Henriksen, T., Hansen, H.C.B. & Jacobsen, G.S. (2006). Degradation of 4-chloro-2-methylphenoxyacetic acid in top- and subsoil is quantitatively linked to the class III tfdA gene, Applied and Environmental Microbiology, 72(2), pp. 1476-1786.
  • 2. Bælum, J., Jacobsen, C.S. & Holben, W.E. (2010). Comparison of 16S rRNA gene phylogeny and functional tfdA gene distribution in thirty-one different 2, 4-dichlorophenoxyacetic acid and 4-chloro-2-methylphenoxyacetic acid degraders, Systematic and Applied Microbiology, 33(2), pp. 67-70.
  • 3. Baran, A. & Tarnawski, M. (2013). Phytotoxkit/Phytotestkit and Microtox?? as tools for toxicity assessment of sediments, Ecotoxicology and Environmental Safety, 98, pp. 19-27.
  • 4. Batogliu-Pazarbasi, M., Milosevic, N., Malaguerra, F., Binning, P.J., Albrechtsen, H.J., Bjerg, P.L. & Aamand, J. (2013). Discharge of landfill leachate to streambed sediments impacts the mineralization potential of phenoxy acid herbicides depending on the initial abundance of tfdA gene classes, Environmental Pollution, 176, pp. 275-283.
  • 5. Celis, E., Elefsiniotis, P. & Singhal, N. (2008). Biodegradation of agricultural herbicides in sequencing batch reactors under aerobic or anaerobic conditions, Water Research, 42(12), pp. 3218-3224.
  • 6. Eurostat (2016). Agricultural production - crops - Statistics Explained (http://ec.europa.eu/eurostat/statistics-explained/index.php/ Agricultural_production_-_crops#Main_statistical_findings (13.08.2018)).
  • 7. Goulding, K.W.T. (2016). Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom, Soil Use and Management, 32(3), pp. 390-399.
  • 8. Greert, L.E., & Shelton, D.R. (1992). Effect of inoculant strain and organic matter content on kinetics of 2 , 4-Dichlorophenoxyacetic acid degradation in soil, Applied and Environmental Micobiology, 58(5), pp. 1459-1465.
  • 9. General Statistical Office - GUS (2016). Statistical Yearbook of Agriculture 2016, Statistical Publishing Establishment, Warsaw, Poland, (2080-8798). (in polish)
  • 10. Herbicide Resistance Action Commitee (2018). Global Classification Lookup. (http://www.hracglobal.com(07.03.2018)).
  • 11. Itoh, K., Tashiro, Y., Uobe, K., Suyama, K. & Yamamoto, H. (2004). Root Nodule Bradyrhizobium spp. harbor acid-degrading proteins homologous with genes encoding 2,4-Dichlorophenoxyacetic acid-degrading proteins, Applied and Environmental Microbiology, 70, pp. 2110-2118.
  • 12. Kobyłecka, J., Turek, A. & Sieroń, L. (2009). Phenoxyalkanoic acid complexes, Thermochimica Acta, 482(1-2), pp. 49-56.
  • 13. López-Piñeiro, A., Peña, D., Albarrán, A., Sánchez-Llerena, J. & Becerra, D. (2013). Behavior of MCPA in four intensive cropping soils amended with fresh, composted, and aged olive mill waste, Journal of Contaminant Hydrology, 152, pp. 137-146.
  • 14. Mcghee, I. & Burns, R.G. (1995). 2-methyl-4-chlorophenoxyacetic acid (MCPA) in contaminated soil, 2, pp. 143-154.
  • 15. Mcgowan, C., Fulthorpe, R., Wright, A., Tiedje, J.M. & Gowan, C.M.C. (1998). Evidence for interspecies gene transfer in the evolution of evidence for interspecies gene transfer in the evolution of 2,4-Dichlorophenoxyacetic acid degraders, Applied and Environmental Microbiology, 64(10), pp. 4089-4092 (http://aem.asm.org/content/64/10/4089.full.pdf+html(13.08.2018)).
  • 16. Microbics Corporation (1992). Microtox manual toxicity testing handbook. Carlsbad, CA.
  • 17. MicroBioTests Inc. (n.d.). Phytotoxkit, 34.
  • 18. Pereira, T., Cerejeira, M.J., & Espírito-Santo, J. (2000). Use of microbiotests to compare the toxicity of water samples fortified with active ingredients and formulated pesticides, Environmental Toxicology, 15(5), pp. 401-405.
  • 19. Phytotoxkit. (2004). Seed germination and early growth microbiotest with higher plants. Standard Operational Procedure. Micro-BioTest Inc., Nazareth, 24.
  • 20. Podolska, G. (2014). The effectiveness and phytotoxicity of herbicide in buckwheat cv. Kora. Polish Journal of Agronomy, 19, pp. 17-24.
  • 21. Poll, C., Pagel, H., Devers-Lamrani, M., Martin-Laurent, F., Ingwersen, J., Streck, T. & Kandeler, E. (2010). Regulation of bacterial and fungal MCPA degradation at the soil-litter interface, Soil Biology and Biochemistry, 42(10), pp. 1879-1887.
  • 22. Siebielec, G., Chabros, B., Smreczak, Agnieszka Klimkowicz-Pawlas, Monika Kowalik, R., Kaczyński, P., Koza, A., Ukalska-Jaruga, Magdalena Łysiak, U. & Poręba, E. (2017). Raport z III etapu realizacji zamówienia "Monitoring chemizmu gleb ornych w Polsce w latach 2015-2017”.
  • 23. Skiba, E., Kobyłecka, J. & Wolf, W.M. (2017). Influence of 2,4-D and MCPA herbicides on uptake and translocation of heavy metals in wheat (Triticum aestivum L.), Environmental Pollution, 220, pp. 882-890.
  • 24. Skiba, E., & Wolf, W.M. (2017). Commercial phenoxyacetic herbicides control heavy metal uptake by wheat in a divergent way than pure active substances alone, Environmental Sciences Europe, 29(1), 26.
  • 25. Smith, A.E., Mortensen, K., Aubin, A.J. & Molloy, M.M. (1994). Degradation of MCPA, 2,4-D, and other phenoxyalkanoic acid herbicides using an isolated soil bacterium, Journal of Agricultural and Food Chemistry, 42(2), pp. 401-405.
  • 26. Spadotto, C.A. & Hornsby, A.G. (2003). Soil sorption of acidic pesticides, Journal of Environment Quality, 32(3), 949.
  • 27. Steliga, T., Jakubowicz, P. & Kapusta, P (2012). Changes in toxicity during in situ bioremediation of weathered drill wastes contaminated with petroleum hydrocarbons, Bioresource Technology, 125, pp. 1-10.
  • 28. Thompson, D.G., Stephenson, G.R., Solomon, K.R. & Skepasts, A.V (1984). Persistence of (2,4-dichlorophenoxy)acetic acid and 2(2,4-dichlorophenoxy)propionic acid in agricultural and forest soils of Northern and Southern Ontario, Journal of Agricultural and Food Chemistry, 32(3), pp. 578-581.
  • 29. Urbaniak, M., Wyrwicka, A., Zieliński, M. & Mankiewicz-Boczek, J. (2016). Potential for Phytoremediation of PCDD/PCDF-Contaminated sludge and sediments using cucurbitaceae plants: a pilot study, Bulletin of Environmental Contamination and Toxicology, 97(3), pp. 401-406.
  • 30. Urbaniak, M., Zieliński, M. & Wyrwicka, A. (2017). The influence of the Cucurbitaceae on mitigating the phytotoxicity and PCDD/ PCDF content of soil amended with sewage sludge, International Journal of Phytoremediation, 19(3), pp. 207-213.
  • 31. Xia, Z.Y., Zhang, L., Zhao, Y., Yan, X., Li, S.P., Gu, T. & Jiang, J.D. (2017). Biodegradation of the herbicide 2,4-Dichlorophenoxyacetic acid by a new isolated strain of achromobacter sp. LZ35, Current Microbiology, 74(2), pp. 193-202.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b68c694-aa75-47aa-a6fc-41aeaa7b8730
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.