Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A heat sink is a device that helps absorb or dissipate heat from the surrounding area using extended surfaces or fins in various geometries. This technology finds its applications in various thermal applications, including power plants, refrigeration, air conditioning systems, electric and electronic devices, and chemical industries. The most common type of heat sink is a metal device with many cooling fins, known as a fin array. There are two methods used to cool heat sinks: passive and active. Increasing the surface area of the fins' thermal conductivity, or heat transfer coefficient, can enhance the performance of the heat sink. There are various profiles for longitudinal fins, including parabolic, triangular, and rectangular shapes. The most popular profile is the rectangular one, particularly in arrays with multiple fins. The purpose of this study is to review the optimization design of longitudinal rectangular fins for arrays with one or more fins subjected to both natural and forced convection.
Rocznik
Tom
Strony
1--23
Opis fizyczny
Bibliogr. 48 poz., rys., wykr.
Twórcy
autor
- Technical Engineering College Kirkuk, Northern Technical University, IRAQ
Bibliografia
- [1] Kordyban T. (1998): Hot Air Rises and Heat Sinks: Everything You Know About Cooling Electronics Is Wrong.–ASME Press, p.236, https://doi.org/10.1115/1.800741.
- [2] Lee S. (1995): Optimum design and selection of heat sinks.– IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, vol.18, No.4, pp. 812-817, doi: 10.1109/95.477468.
- [3] Londhe K. and Kaushik V.R. (2017): Heat sink design for optimal performance of compact electronic appliances -a review.– Journal for Advanced Research in Applied Sciences, vol.4, No.5, pp.13-21.
- [4] Kandasamy R., Wang X.Q. and Mujumdar A.S. (2008): Transient cooling of electronics using phase changematerial (PCM)-based heat sinks.– Appl. Therm. Eng., vol.28, No.8-9, pp.1047-1057, doi:10.1016/J.APPLTHERMALENG.2007.06.010.
- [5] Kays W.M. and London A.L. (2011): Compact Heat Exchangers.– Third Edition.
- [6] https://celsiainc.com/technology/heat-sink-design/.
- [7] Lee H.S. (2010): Thermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and SolarCells.– John Wiley & Sons, Inc., doi: 10.1002/9780470949979.
- [8] Holman J.P. (2010): Heat Transfer.– 10th ed., p.758, McGraw-Hill Education.
- [9] Kraus A.D., Aziz A. and Welty J. (2001): Extended Surface Heat Transfer.– A Wiley-Interscience Publication J.WILEY & SONS, Inc., doi: 10.1002/9780470172582.
- [10] Cengel Y., Turner R. and Smith R. (2001): Fundamentals of thermal-fluid sciences.– Appl. Mech. Rev., vol.54,No.6, doi: 10.1115/1.1421126.
- [11] Brown A. (1965): Optimum dimensions of uniform annular fins.– Int. J. Heat Mass Transf., vol.8, No.4, pp.655-662,doi: 10.1016/0017-9310(65)90051-7.
- [12] Cobble M.H. (1971): Optimum fin shape.– J. Franklin Inst., vol.291, No.4, pp.283-292, doi: 10.1016/0016-0032(71)90184-0.
- [13] Snider A.D. and Kraus A.D. (1987): The quest for the optimum longitudinal fin profile.– Heat Transfer Engineering, vol.8, No.2, doi: 10.1080/01457638708962790.
- [14] Duffin R. (1959): A variational problem relating to cooling fins.– Indiana University Mathematics Journal, vol.8,No.1, doi: 10.1512/iumj.1959.8.58003.
- [15] Maday C.J. (1974): The minimum weight one-dimensional straight cooling fin.– J. Eng. Ind., vol.96, No.1, pp.161-165, https://doi.org/10.1115/1.3438291 .
- [16] Ernst E.R.G., Eckert R.G. and Drake R.M. (1987): Analysis of heat and mass transfer.– Hemisphere Pub. Corp.,accessed: Nov. 21, 2023, [Online], available: https://inis.iaea.org/search/search.aspx?orig_q=RN:19100674.
- [17] Razelos P. and Imre K. (1983): Minimum mass convective fins with variable heat transfer coefficients.– J. FranklinInst., vol.315, No.4, doi: 10.1016/0016-0032(83)90078-9.
- [18] Aziz A. (1992): Optimum dimensions of extended surfaces operating in a convective environment.– Appl. Mech. Rev., vol.45, No.5, doi: 10.1115/1.3119754.
- [19] Bergman T.L., Lavine A.S., Incropera F.P. and De Witt D.P. (2015): Fundamentals of Heat and Mass Transfer.–John Wiley & Sons, USA.
- [20] Chung B.T.F. and Iyer J.R. (1993): Optimum design of longitudinal rectangular fins and cylindrical spines withvariable heat transfer coefficient.– Heat Transfer Engineering, vol.14, No.1, pp.31-41, doi:10.1080/01457639308939792.
- [21] Schmidt E. (1926): Die Wärmeübertragung Durch Rippen.
- [22] Chung B.T.F. and Nguyen L.D. (1986): Optimization of design parameters for radiating longitudinal fins of variousgeometries.– in AIAA Paper, doi: 10.2514/6.1986-150.
- [23] Levy E.K. (1971): Optimum plate spacings for laminar natural convection heat transfer from parallel verticaliso thermal flat plates.– J. Heat Transfer, vol.93, No.4, pp.463-465, doi: 10.1115/1.3449847.
- [24] Elenbaas W. (1942): Heat dissipation of parallel plates by free convection.– Physica, vol.9, No.1, pp.1-28, doi:10.1016/S0031-8914(42)90053-3.
- [25] Bodoia J.R. and Osterle J.F. (1962): The development of free convection between heated vertical plates.– J. HeatTransfer, vol.84, No.1, pp.40-43, doi: 10.1115/1.3684288.
- [26] Bar-Cohen A. and Jelinek M. (1985): Optimum arrays of longitudinal, rectangular fins in corrective heat transfer.–Heat Transfer Engineering, vol.6, No.3, pp.68-78, doi: 10.1080/01457638508939633.
- [27] Starner K.E. and McManus H.N. (1963): An experimental investigation of free-convection heat transfer fromrectangular-fin arrays.– J. Heat Transfer, vol.85, No.3, pp.273-277, doi: 10.1115/1.3686097.
- [28] Jones C.D. and Smith L.F. (1970): Optimum arrangement of rectangular fins on horizontal surfaces for free-convection heat transfer.– J. Heat Transfer, vol.92, No.1, doi: 10.1115/1.3449648.
- [29] Barrett A.V. and Obinelo I.F. (1997): Characterization of longitudinal fin heat sink thermal performance and flow bypass effects through CFD methods.– in Annual IEEE Semiconductor Thermal Measurement and Management Symposium, doi: 10.1109/stherm.1997.566793.
- [30] De Lieto Vollaro A., Grignaffini S. and Gugliermetti F. (1999): Optimum design of vertical rectangular fin arrays.–International Journal of Thermal Sciences, vol.38, No.6, pp. 525-529, doi: 10.1016/S1290-0729(99)80025-8.
- [31] Baskaya S., Sivrioglu M. and Ozek M. (2000): Parametric study of natural convection heat transfer from horizontal rectangular fin arrays.– International Journal of Thermal Sciences, vol.39, No.8, pp.797-805, doi: 10.1016/S1290-0729(00)00271-4.
- [32] Bar-Cohen A., Iyengar M. and Kraus A.D. (2003): Design of optimum plate-fin natural convective heat sinks.–Journal of Electronic Packaging, Transactions of the ASME, vol.125, No.2, pp.208-216, SPEC., doi:10.1115/1.1568361.
- [33] Yazicioǧlu B. and Yüncü H. (2007): Optimum fin spacing of rectangular fins on a vertical base in free Convection heat transfer.– Heat and Mass Transfer/Waerme- und Stoffuebertragung, vol.44, No.1, pp.11-21, doi:10.1007/s00231-006-0207-6.
- [34] Mittelman G., Dayan A., Dado-Turjeman K. and Ullmann A. (2007): Laminar free convection underneath adownward facing inclined hot fin array.– Int. J. Heat Mass Transf., vol.50, No.13-14, pp.2582-2589, doi:10.1016/j.ijheatmasstransfer.2006.11.033.
- [35] Shaeri M.R. and Yaghoubi M. (2009): Thermal enhancement from heat sinks by using perforated fins.– EnergyConvers. Manag., vol.50, No.5, pp.1264-1270, doi: 10.1016/j.enconman.2009.01.021.
- [36] Kim D.K. (2012): Thermal optimization of plate-fin heat sinks with fins of variable thickness under natural convection.– Int. J. Heat Mass Transf., vol.55, No.4, pp.752-761, doi: 10.1016/j.ijheatmasstransfer.2011.10.034.
- [37] Ahmadi M., Mostafavi G. and Bahrami M. (2014): Natural convection from rectangular interrupted fins.–International Journal of Thermal Sciences, vol.82, No.1, pp.62-71, doi: 10.1016/j.ijthermalsci.2014.03.016.
- [38] Pouryoussefi S. and Zhang Y. (2015): Experimental study of air-cooled parallel plate fin heat sinks with and without circular pin fins between the plate fins.– Journal of Applied Fluid Mechanics, vol.8, No.3, pp.515-520, doi:10.18869/acadpub.jafm.67.222.22930.
- [39] Karamanis G. and Hodes M. (2016): Longitudinal-fin heat sink optimization capturing conjugate effects under fully developed conditions.– J. Therm. Sci. Eng. Appl., vol.8, No.4, p.7, doi: 10.1115/1.4034339.
- [40] Shadlaghani A., Tavakoli M.R., Farzaneh M. and Salimpour M.R. (2016): Optimization of triangular fins with/without longitudinal perforate for thermal performance enhancement.– Journal of Mechanical Science and Technology, vol.30, No.4, pp.1903-1910, doi: 10.1007/s12206-016-0349-5.
- [41] Hong S.H. and Chung B.J. (2016): Variations of the optimal fin spacing according to Prandtl number in natural convection.– International Journal of Thermal Sciences, vol.101, pp.1-8, doi:10.1016/J.IJTHERMALSCI.2015.10.026.
- [42] Dogan M. and Dogan D. (2017): Experimental investigation of natural convection heat transfer from fin arrays for different tip-to-base fin spacing ratios.– Isi Bilimi Ve Teknigi Dergisi/ Journal of Thermal Science and Technology,vol.37, No.1, pp.147-157.
- [43] Jaya Krishna D. (2018): Operational time and melt fraction based optimization of a phase change material longitudinal fin heat sink.– J. Therm. Sci. Eng. Appl., vol.10, No.6, p.4, doi: 10.1115/1.4040988.
- [44] Hou D., Xin X. and Qian J. (2020): Analysis of natural convection heat transfer from vertical and inclined plate fin heat sinks.– in Lecture Notes in Electrical Engineering, Springer Verlag, pp.479-487, doi: 10.1007/978-981-32-9441-7_49.
- [45] Jasim H.H. (2020): Heat transfer enhancement from heat sources using optimal design of combined fins heat-sinks.–Propulsion and Power Research, vol.9, No.4, pp.372-382, doi: 10.1016/j.jppr.2020.11.002.
- [46] Xie L., Zhang Y., Ge M. and Zhao Y. (2022): Topology optimization of heat sink based on variable density method.–Energy Reports, vol.8, pp.718-726, doi: 10.1016/J.EGYR.2021.11.214.
- [47] Obaid A.J. and Hameed V.M. (2023): An experimental and numerical comparison study on a heat sink thermal performance with new fin configuration under mixed convective conditions.– S. Afr. J. Chem. Eng., vol.44, pp.81-88, doi: 10.1016/J.SAJCE.2023.01.009.
- [48] Kaya M. and Kaya Ş. (2023): Optimum fin spacing of rectangular fins on aluminum heat sinks plates.– Proceedings of the Romanian Academy Series A - Mathematics Physics Technical Sciences Information Science, vol.24, No.2,pp.157-157.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b66bf2d-e6df-49ae-8d63-d6d82f04de18
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.