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ABSTRACT. As one of the participants in the Second Earth Orientation Parameters Prediction 

Comparison Campaign (2nd EOP PCC), we submitted two data files. One is 365 days’ 

predictions into the future for Earth orientation parameters (EOP) (the position parameters Px 

and Py, the time parameters UT1-UTC and length of day changes ΔLOD), processed by the 

traditional least-square and autoregressive (LS + AR) model. Another is 90 days’ predictions 

by the combined least-square and convolution method (LS + Convolution), with effective 

angular momentum (EAM) from Earth System Modelling GeoForschungsZentrum in Potsdam 

(ESMGFZ). Results showed that the LS + Convolution method performed better than the LS + 

AR model in short-term EOP predictions within 10 days, while the traditional LS + AR model 

presented higher accuracy in medium-term predictions over 10–90 days. Furthermore, based on 

the climate change information in Earth’s rotation (mainly in the interannual variations of 

LOD), the climate change indicators are investigated with ΔLOD observations and long-term 

predictions. After two intermediate La Nina events were detected in the climate-related ΔLOD 

observations during the period of 2020–2022, another stronger La Nina phenomenon is 

indicated in the climate-related ΔLOD long-term predictions. 

Keywords: EOP prediction, effective angular momentum, interannual ΔLOD, climate change 

indicators 

1. INTRODUCTION 

Variations in Earth rotation can be expressed by the Earth orientation parameters, which is 

abbreviated as EOP (mainly containing the position variations Px and Py, the time parameters 

UT1-UTC and length of day changes ΔLOD). EOP interlink conversion between the terrestrial 

and celestial reference systems, have important applications in many areas such as deep space 

exploration, satellite precise orbit determination and astrogeodynamics. As the EOP obtained 

by the space geodetic technologies have several days to weeks delay, the growing demands for 

modern space campaigns make high-precision short-medium-term (1–90 days) EOP predictions 

a worthy topic and initiate many researches.  
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In recent decades, single or hybrid mathematical models have been employed to EOP 

predictions, such as the least-square extrapolation (LS) and autoregressive (AR) model (Wu et 

al. 2019; Xu et al. 2015), spectral analysis combined with LS (Zotov et al. 2018; Guo et al. 

2013), artificial neural networks (ANN) (Lei et al. 2017; Schuh et al. 2002), wavelet 

decomposition and auto-covariance method (Su et al. 2014; Kosek et al. 2005) and Kalman 

filter (Xu et al. 2012; Gross et al. 1998). Considering the contributions of the surface fluid 

(atmospheric and oceanic angular momentum [AAM and OAM, respectively]), numerous 

studies have added these geophysical excitations to improve EOP predictions (Modiri et al. 

2020; Dill et al. 2019; Wang et al. 2014).  

Among these mathematical models, results of the EOP prediction comparison campaign (EOP 

PCC) which took place during 2005–2009 revealed that no particular prediction technique is 

superior to others for all EOP components and all prediction intervals, while the LS + AR 

method shows advantage on average (Kalarus et al. 2010). The second EOP PCC was launched 

in July 2021, aiming to compare and evaluate the latest status of various EOP forecasts 

conducted by different institutes all over the world. As one of the participants of this campaign, 

we have summited two data files processed by the traditional LS + AR model and the LS + 

Convolution method, respectively. In the LS + Convolution method, the geophysical excitations 

including the OAM and AAM from the Earth System Modelling GeoForschungsZentrum in 

Potsdam (ESMGFZ) effective angular momentum (EAM) data sets are introduced.  

Keeping with the angular momentum conservation of the Earth’s ocean–atmosphere system, 

the forced angular momentum variations will cause opposite perturbations in the solid Earth, 

resulting in Earth’s rotation changes. Based on this correlation, numerous studies have been 

carried out on the contributions of EOP from different geophysical sources. The results show 

that surface fluid becomes the primary source of interannual, seasonal and sub-seasonal 

variations of the Earth’s rotation (Haddad and Bonaduce 2017; Zhou et al. 2008). 

As a strong ocean–atmosphere coupling process on interannual scales, the El Nino-Southern 

Oscillation (ENSO) is a significant component of global weather and climate change. In other 

words, ENSO and Earth’s rotation changes are closely related (Zotov et al. 2022; Lambert et 

al. 2017; Dickey et al. 2007). Moreover, the climate-related ΔLOD discussed in the latest work 

is suggested as a climate change indicator (Xu et al. 2022). Thus, this study focuses on the 

relationship between ENSO and the interannual variations of the Earth’s rotation rate. Based 

on the interannual variability characteristics of ENSO events, we try to extract the climate 

change information both from ΔLOD observations and long-term (1-year) predictions. 

The structure of the paper is as follows: the model and method employed for EOP predictions 

are described in Section 2; the data processing and analyses are discussed in Section 3; results 

are assessed and discussed in Section 4 and a summary of the main findings is provided in 

Section 5. 

2. MODEL AND METHOD 

This study selects the LS + AR model and LS + Convolution method to obtain EOP predictions. 

The root mean square error (RMSE) is chosen as a quality measure.  

2.1. The LS + AR model 

As complex variations of the Earth's rotation, there are commonly relative regular and irregular 

signals coupling in EOP data series, such as the trend, annual, Chandler terms and high-

frequency trembles in polar motion and the trend, interannual, seasonal and sub-seasonal 

oscillations in ΔLOD. For the predictions of these stable signals, we adopt the LS model 
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expressed by polynomial trend and harmonic oscillations, and a stochastic process AR model 

can be employed for the predictions of irregular variations (Xu et al. 2015, 2012).  

The LS model could be presented as 

  (1) 

where  

 is the EOP data time series, 

 are the LS model fitting parameters and  

are the periods of regular terms in EOP series. In the case of polar motion, 

the predominant oscillations are annual and Chandler ; for ΔLOD, 

the prominent periodic terms are annual and semi-annual .  

The rest of the LS fitting terms are then processed by the AR model; for a stationary random 

sequence 𝑚𝑖𝑟𝑒𝑔𝑢𝑙𝑎𝑟, the AR model is expressed as 

  (2) 

where 

𝑎 is the zero-mean white noise,  

𝑃 is the order of AR model, which could be determined by the final prediction error 

(FPE) criterion and corresponds to the smallest FPE (Akaike 1971) and 

𝜑  is the autoregressive coefficient of the AR model, which could be obtained by 

solving the Yule-Walker equations with Levinson–Durbin recursion (Brockwell and Davis 

1996). 

2.2. The LS + Convolution method 

In the LS + Convolution method, the EAM from ESMGFZ is selected as the input excitation 

series (using only the main contributions AAM and OAM). Firstly, the EAM series are 

predicted by the commonly used LS + AR model. Secondly, the interannual, seasonal and sub-

seasonal terms of EOP are calculated from the EAM predictions by Liouville convolution 

equation. Meanwhile, the rest of EOP trend terms are extrapolated by the polynomial LS model. 

Finally, the total EOP predictions are combined by the excitation calculations and trend 

extensions (throughout the paper, this is abbreviated as the LS + Convolution method). 

Liouville convolution equation describes the relationship between theoretical EOP 𝑚(𝑡) and 

excitation function 𝜓(𝑡) (Eubanks 1993; Gross 1992) as follows:  

  (3) 

  

http://www.iciba.com/%5b%E5%8C%96%5d%20Liouville%20equation
http://www.iciba.com/%5b%E5%8C%96%5d%20Liouville%20equation
http://www.iciba.com/%5b%E5%8C%96%5d%20Liouville%20equation
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where 

𝐴, 𝐶 are the principal moments of inertia, 

𝛺 is the average angular velocity of the Earth and 

𝜎𝑐 =
𝐶−𝐴

𝐴
𝛺 is the Chandler frequency. 

Considering the viscoelasticity of the Earth, the real number 𝜎𝑐  should be replaced by the 

complex one 𝝈𝑐 =
2𝜋

𝑇𝑐
(1 +

𝑖

2𝑄𝑐
) . Here, 𝑇𝑐 = 433𝑑  and 𝑄𝑐 = 60  represent the period and 

attenuation factor of Chandler wobble, respectively (Seitz et al. 2005).  

The excitation function 𝜓(𝑡) in Equation 3 can be expressed as 

  (4) 

where 

𝜓(𝑡) is the excitation source induced by surface fluid and luni-solar torques, 

∆𝐼(𝑡) is the perturbation term of the Earth's inertia tensor, also called the mass term, 

𝒉(𝑡) is the relative angular momentum and is also named as the motion term. 

Regarding that there are no high-frequency terms (with period shorter than 2 days) in the 

conventional EOP observations, the theoretical EOP 𝒎(𝑡)  is equal to the observed EOP 

without more translations (Gross 1992).  

2.3. The prediction precision indicator 

Among many indicators of the prediction precision, the RMSE is a quality measure and is 

represented in Equation 5.  

  (5) 

where 

𝑂 are the EOP observations, 

𝑃 are the EOP predictions, 

𝑗 is the prediction span (interval in the future) and 

𝑛 is the number of predictions used to calculate statistics.  

3. DATA PROCESSING AND ANALYSES 

Taking advantage of modern space technologies, the EOP observations have been greatly 

improved since 1980. So, this study focuses on the period from January 1980 to April 2022. 

Both the EOP and EAM data have been selected with all available epochs up to 1 day before 

the first prediction. The input EOP series contain combined and rapid solutions coming from 

the International Earth Rotation and Reference Systems Service (IERS) (Ratcliff and Gross 

2019; Gambis 2004) 

(https://www.iers.org/IERS/EN/DataProducts/EarthOrientationData/eop.html). In data 

processing, the tidal terms in EOP are corrected by the IERS 2010 zonal tidal model (Gerard 

https://www.iers.org/IERS/EN/DataProducts/EarthOrientationData/eop.html
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and Brian 2010). In convolution calculations, the EAM series are obtained from ESMGFZ 

(Dobslaw and Dill, 2018) (http://esmdata.gfz-potsdam.de:8080/). In climate change analysis, 

the ENSO indices are obtained from the National Oceanic and Atmospheric Administration 

(NOAA) 

(https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php). 

3.1. The excitation function series 

Based on the correlations between EOP observations and geophysical excitation sources 

expressed by Liouville equation, we can calculate the EOP from excitation function directly. 

The excitation function series utilized in this study is the EAM from ESMGFZ, mainly arising 

from atmospheric and oceanic angular momentum changes. The time span of EAM series is 

from 1976 till now with a sampling interval of 3 h and is then averaged to 1 day to be consistent 

with that of EOP series. To illustrate the prominent contributions from surface fluid forcing, 

the interannual, seasonal and sub-seasonal variations extracted from IERS C04 EOP 

observations are compared in Figure 1 with the convoluted EOP from EAM series. 

 

Figure 1. EOP interannual, seasonal and sub-seasonal terms extracted from IERS C04 observations 

(black line) and convoluted from the EAM series (red line) during 1980-2022.  

(a) Px, (b) Py and (c) ΔLOD 

As apparent from Figure 1a and b, after removing the trend terms, the polar motion sequences 

mainly contain the annual and Chandler oscillations and can be explained well by the EAM 

convolutions. Compared to polar motion, the EAM contributions to ΔLOD in Figure 1c are not 

that prominent. After removing the tidal and trend terms, ΔLOD series can be accounted for by 

https://www.baidu.com/link?url=h-Byq6SuU7eKgtjct_OZbEPjXBp5ESgkHHFzHrDZfNuPkiAC5gyT0jsDe22b70fBo1rRvazvpjZTyICFx2rS1K&wd=&eqid=edf84755000207b10000000361037149
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EAM contributions mostly. The remaining discrepancy may be ascribed to EAM model errors 

and other sources associated with interior processes (Hsu et al. 2021; Dobslaw and Dill, 2018). 

In addition, the same conclusions have been confirmed with other angular momentum data sets 

given by the National Center for Environmental Prediction/National Center for Atmospheric 

Research (NCEP/NCAR) reanalysis project and Estimating the circulation and Climate of the 

Ocean (ECCO) model (Chen et al. 2019; Bizouard et al. 2011). 

3.2. The climate-related variations in LOD series 

 As climate change indicators in Earth’s rotation, LOD variations on interannual scales have 

been discussed extensively. Besides, the latest study reveals that there are three signals (at ~6, 

~7 and ~8 years) in ΔLOD interpreted as internal causes (Hsu et al. 2021), and these fluctuations 

need to be removed to obtain the interannual ΔLOD solely related to climatic variations. 

Considering all these effects from the trend terms, tidal variations and fluctuations due to 

internal causes, the time series of climate-related ΔLOD are displayed in Figure 2 after a 

rigorous data processing flowchart (see Xu et al. 2022 for more details). To show consistency 

between the climate-related ΔLOD and ENSO indices, the Nino 3.4 of Oceanic Niño Index 

(ONI) from NOAA during the same time span is also presented in Figure 2. 

 

Figure 2. Monthly mean series of the climate-related ΔLOD and Nino 3.4 from January 1980  

to April 2022. The blue square frames mark the three extreme El Nino events; the red square frame 

marks the latest two La Nina events during 20202022. (a) Climate-related ΔLOD and (b) Nino 3.4 

Figure 2 shows that the climate-related ΔLOD and the ENSO indices exhibit similar positive 

and negative fluctuations, illustrating the speed decelerations and accelerations in Earth’s 

rotation and corresponding to the El Nino (warm) and La Nina (cold) events in climate change, 

respectively. According to the NOAA determination conditions (sea surface temperature 

anomaly [SSTA] ≥0.5℃ or SSTA ≤0.5℃ for more than 5 months), there were 11 El Nino 

and 14 La Nina events over decades and three extreme El Nino events occurred during 1982–
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1983, 1997–1998 and 2015–2016 (Lambert et al. 2017). These events are identified in the 

observational record every time the equatorial Pacific SSTA is greater than 2.0C for more than 

5 months. To be specific, the clearly descending areas in interannual ΔLOD and ENSO indices 

are enclosed with a red square frame, pointing to the latest two La Nina events during 2020–

2022. The minimum SSTA of approximately 1.3℃ and 1.0℃ occurred in November 2020 

and December 2021, which could be both identified as intermediate strength. Furthermore, 

these two La Nina events forced the interannual ΔLOD to minimum values of approximately 

0.22 and 0.19 ms, separately. 

4. RESULTS 

It is worth to note that the two parameters UT1-UTC and ΔLOD can be interconverted to each 

other. UT1-UTC is more commonly used in modern space applications, and ΔLOD is widely 

employed in scientific analysis. Thus, we just present accuracy results of the three predictions 

of Px, Py and UT1-UTC, but discuss climate change information in ΔLOD series. 

4.1. EOP predictions 

To evaluate EOP predictions carried out by the LS + AR and LS + Convolution methods, we 

estimate accuracy of 1–90 days’ results over the second EOP PCC period of 07.2021–03.2022. 

These predictions were produced weekly, and the RMSE values of different forecasting spans 

are listed in Table 1. In order to illustrate the results more intuitively, the 1–90 days’ RMSE 

values calculated from the two models are graphically shown in Figure 3. The red and dot line 

represents the RMSE for the LS + Convolution predictions, and the blue and dot line for the LS 

+ AR predictions. 

Table 1. RMSE of different EOP forecast spans obtained by the LS + AR and LS + CV methods  

over 07.2021–03.2022 

Forecast 

span (days) 

Px (mas) Py (mas) UT1-UTC (ms) 

LS + AR LS + CV LS + AR LS + CV LS + AR LS + CV 

1 0.70 0.058 0.87 0.84 0.20 0.18 

2 1.14 1.05 1.05 1.00 0.35 0.32 

3 1.61 1.54 1.32 1.27 0.50 0.47 

4 2.12 2.11 1.50 1.45 0.64 0.60 

5 2.54 2.54 1.67 1.64 0.76 0.71 

6 2.84 2.83 1.83 1.81 0.86 0.82 

7 3.02 3.02 1.88 1.86 0.91 0.89 

8 3.22 3.22 1.93 1.92 0.97 0.95 

9 3.44 3.43 2.01 2.01 1.03 1.01 

10 3.75 3.74 2.14 2.13 1.10 1.07 

20 4.87 5.15 3.01 3.06 2.83 2.90 

30 5.44 5.80 3.98 4.10 4.18 4.40 

40 5.35 5.85 5.23 5.53 5.98 6.46 

50 4.47 5.51 6.47 7.08 8.03 8.72 
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Forecast 

span (days) 

Px (mas) Py (mas) UT1-UTC (ms) 

LS + AR LS + CV LS + AR LS + CV LS + AR LS + CV 

60 4.32 4.82 7.33 8.12 9.98 10.85 

70 5.27 5.44 8.17 9.08 11.63 12.47 

80 6.00 6.22 9.09 10.04 13.20 14.18 

90 6.10 6.13 9.52 10.32 15.13 16.04 

 

Figure 3. The 1–90 days’ RMSE calculated from the LS + AR (blue dot line)  

and LS + Convolution (red dot line) model. (a) Px, (b) Py and (c) UT1-UTC 

From the closely related prediction RMSE results in Table 1 and Figure 3, a preliminary finding 

could be summarized: in short-term EOP predictions within 10 days, the LS + Convolution (red 

dot line) method performs slightly better, while the traditional LS + AR model (blue dot line) 

shows significant improvements in medium-term predictions over 10–90 days.  

4.2. Climate change information extracted from ΔLOD observations and predictions 

during 2020–2023 

Regarding the consistent climate change information shown in interannual ΔLOD and ENSO 

indices in Section 3.2, here we try to investigate the climate change forecasts with ΔLOD long-

term predictions, focusing on the period 2020–2023. Based on the accuracy estimates listed in 

Table 1, the LS + AR model is selected to obtain the long-term ΔLOD predictions. To make 

the prediction of the ENSO events more convincing, we have tried two forecasting tests of the 

latest two La Nina during 2020–2021 and 2021–2022 from ΔLOD predictions of 1 year over 
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the event. The climate-related variations extracted from different ΔLOD observations and 

predictions are compared in Figure 4.  

 

Figure 4. Climate change information extracted from ΔLOD observations and predictions:  

(a) 2020–2021 time span, (b) 2020–2022 time span and (c) 2020–2023 time span  

Figure 4 illustrates the climate-related variations extracted from ΔLOD observations (blue, 

green and black curves) and predictions of 1 year into the future (yellow, orange and red 

curves). As can be seen in black curve (c), the latest two La Nina events during the periods 

2020–2021 and 2021–2022 are marked with blue, with minimum values of approximately 0.22 

and 0.19 ms, respectively. Compared to the variations extracted only from ΔLOD 

observations, the first forecasting test indicates the latest 2020–2021 La Nina event with a 

weaker strength (yellow curve (a), 0.16 ms), while the second test predicts the latest 2021–

2022 La Nina with a bigger amplitude (orange curve (b), 0.25 ms). In summary, these two 

tests prove that the climate-related variations extracted from ΔLOD predictions could be 

indicators of climate change. After forecasting tests of the latest two ENSO events, the climate-

related terms extracted from ΔLOD predictions of 1 year over 2022–2023 are denoted in the 

red cure (c). It can be seen that another stronger follow-up La Nina is predicted in the next year 

(marked with pink, 0.27 ms). Considering that the latest 2021–2022 La Nina is still in the 

process of development, this predicted minimum point may be a second trough continuing from 

the 2021–2022 phenomenon. The latest two La Nina events were suggested to be potential 

indicators of the Earth’s rotation acceleration and series of extreme weather events (e.g. cold 

waves and strong rainfalls) in the recent two years; therefore, the next predicted trough needs 

more investigations and attention. 
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5. CONCLUSIONS 

Angular momentum exchanges of the solid Earth with geophysical fluids as well as other forces 

excite the Earth’s rotation changes, and their relationship can be depicted by Liouville equation, 

meaning that EOP and geophysical excitations could be interconverted to each other. This work 

reconstructs the interannual, seasonal and sub-seasonal EOP by Liouville equation, with 

geophysical excitations (AAM, OAM) from ESMGFZ during 1980–2022. Results show that 

the convoluted sequences match the observed EOP series well, which confirms the fluid 

contributions to EOP reported in previous studies. 

Using the latest EAM series from ESMGFZ, we employed the LS + Convolution method to 

obtain 1–90 days’ EOP predictions. As a comparison, the LS + AR method was also carried 

out. The RMSE statistics revealed that the LS + Convolution method performs better in short-

term EOP predictions and the LS + AR model shows higher accuracy in medium-term 

predictions. We will introduce other small contributors (e.g. hydrological angular momentum) 

to EOP predictions in further convolution calculations.  

In addition, two intermediate La Nina events during 2020–2022 were detected in both the 

climate-related ΔLOD and ENSO indices. Besides, the latest two La Nina events have been 

forecasted successfully with the verification experiments. Furthermore, another stronger La 

Nina phenomenon is predicted in the near future. Considering a series of severe weather events 

over the past 2 years, the whole society needs to pay close attention. We will continue to focus 

on this event in subsequent studies. 
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