Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
It would appear useful to come back to the question of admissibility in linear estimation on a general Gauss-Markov model. We prove how a functional approach to this problem, based on a very important LaMotte theorem [11], clearly leads to characterization of all admissible linear estimators of mean vector or linear transformation of mean vector. Thus we have managed to modify significantly a Klonecki and Zontek theorem [9] allowing us to find in a different way an essential characterization shown by Baksalary and Markiewicz [4], based on the logic put forward by Rao (cf. [13] and [14]). We also give a variational characterization of admissibility in linear estimation and a geometrical proof of a Baksalary and Mathew theorem [7] relative to equality between the set of best linear unbiased estimators (or Gauss-Markov estimators) and the set of linear admissible estimators of mean vector. We finish by explaining more results on admissibility of linear estimators of vector parameters.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
219--245
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
- Departement de Mathématiques – Recherche, I.P.R.A. - Université de Pau et des Pays de l’Adour, Avenue de l’Université - 64000 Pau, France
Bibliografia
- [1] I. S. Alalouf and G. P. H. Styan, Characterizations of estimability in the general linear models, Ann. Statist 7 (1979), pp. 194-200.
- [2] J. К. Вaksalary and A. Markiewicz, Admissible linear estimators in restricted linear models, Linear Algebra Appl. 70 (1985), pp. 9-19.
- [3] — Characterizations of admissible linear estimators in restricted linear models, J. Statist. Plann. Inference 13 (1986), pp. 395-398.
- [4] — Admissible linear estimators in the general Gauss-Markov model, ibidem 19 (1988), pp. 349-359.
- [5] — A matrix inequality and admissibility of linear estimators with respect to mean square error matrix criterion, Linear Algebra Appl. 112 (1989), pp. 9-18.
- [6] — Admissible linear estimators of an arbitrary vector of parametric functions in the general Gauss-Markov model, J. Statist. Plann. Inference 26 (1990), pp. 161-171.
- [7] J. К. Вaksalary and Th. Mathew, Admissible linear estimation in the general Gauss-Markov model with an incorrectly specified dispersion matrix, J. Multivariate Anal. 27 (1988), pp. 53-67.
- [8] W. Klonecki. Linear estimators of the mean vector in linear models: problem of admissibility, Probab. Math. Statist 2 (1982), pp. 167-178.
- [9] — and S. Zontek, On the structure of admissible linear estimators, J. Multivariate Anal. 24 (1988), pp. 11-30.
- [10] L. R. LaMotte, On admissibility and completeness of linear unbiased estimators in a general linear model, J. Amer. Statist Assoc. 72 (1977), pp. 438-441.
- [11] — Admissibility in linear estimation, Ann. Statist. 10 (1982), pp. 245-256.
- [12] F. Y. Lin and T. S. Yong, Necessary and sufficient conditions that linear estimators of a mixed effects linear model are admissible under matrix loss function, Statistics 24 (1993), pp. 303-309.
- [13] Th. Mathew, C. R. Rao and В. K. Sinha, Admissible linear estimation in singular linear models, Comm. Statist. A — Theory Methods 13 (1984), pp. 3033-3045.
- [14] A. Olsen, J. Seely and D. Birkes, Invariant quadratic unbiased estimation for two variance components, Ann. Statist. 4 (1976), pp. 878-890.
- [15] X L. Philoche, A propos du théoreme de Gauss-Markov, Ann. Inst. H. Poincare 4 (1971), pp. 271-281.
- [16] C. R. Rao, Unified theory of least squares, Comm. Statist. 1 (1972), pp. 1-8.
- [17] — Estimation of parameters in a linear model, Ann. Statist. 4 (1976), pp. 1023-1037. Correction, ibidem 7 (1979), p. 696.
- [18] J.-J. Téchené, Une introduction á la théorie genérale de l’approximation quadratique d’une application linéaire, Probab. Math. Statist. 15 (1995), pp. 469-492.
- [19] — Sur la notion de projection orthogonale dans un espace semi-euclidien, Linear Algebra Appl., Fifth Special Issue on Linear Algebra and Statistics (1996), pp. 239-268.
- [20] — Les aspects fondamentaux de l’admissibilité en approximation quadratique d‘applications linéaires, Linear Algebra Appl., Sixth Special Issue on Linear Algebra and Statistics (1997), pp. 389-419.
- [21] — Logique des moindres-carrés et inference statistique, These de Doctorat d’Etat, Université de Pau et des Pays de l’Adour, France, 1994.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b59cda8-e4d5-472e-a091-faeba1f97c7e