PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Une étude algébrique de l’admissibilité en estimation linéaire de la moyenne sur un modéle général de Gauss-Markov

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
FR
Abstrakty
EN
It would appear useful to come back to the question of admissibility in linear estimation on a general Gauss-Markov model. We prove how a functional approach to this problem, based on a very important LaMotte theorem [11], clearly leads to characterization of all admissible linear estimators of mean vector or linear transformation of mean vector. Thus we have managed to modify significantly a Klonecki and Zontek theorem [9] allowing us to find in a different way an essential characterization shown by Baksalary and Markiewicz [4], based on the logic put forward by Rao (cf. [13] and [14]). We also give a variational characterization of admissibility in linear estimation and a geometrical proof of a Baksalary and Mathew theorem [7] relative to equality between the set of best linear unbiased estimators (or Gauss-Markov estimators) and the set of linear admissible estimators of mean vector. We finish by explaining more results on admissibility of linear estimators of vector parameters.
Rocznik
Strony
219--245
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
  • Departement de Mathématiques – Recherche, I.P.R.A. - Université de Pau et des Pays de l’Adour, Avenue de l’Université - 64000 Pau, France
Bibliografia
  • [1] I. S. Alalouf and G. P. H. Styan, Characterizations of estimability in the general linear models, Ann. Statist 7 (1979), pp. 194-200.
  • [2] J. К. Вaksalary and A. Markiewicz, Admissible linear estimators in restricted linear models, Linear Algebra Appl. 70 (1985), pp. 9-19.
  • [3] — Characterizations of admissible linear estimators in restricted linear models, J. Statist. Plann. Inference 13 (1986), pp. 395-398.
  • [4] — Admissible linear estimators in the general Gauss-Markov model, ibidem 19 (1988), pp. 349-359.
  • [5] — A matrix inequality and admissibility of linear estimators with respect to mean square error matrix criterion, Linear Algebra Appl. 112 (1989), pp. 9-18.
  • [6] — Admissible linear estimators of an arbitrary vector of parametric functions in the general Gauss-Markov model, J. Statist. Plann. Inference 26 (1990), pp. 161-171.
  • [7] J. К. Вaksalary and Th. Mathew, Admissible linear estimation in the general Gauss-Markov model with an incorrectly specified dispersion matrix, J. Multivariate Anal. 27 (1988), pp. 53-67.
  • [8] W. Klonecki. Linear estimators of the mean vector in linear models: problem of admissibility, Probab. Math. Statist 2 (1982), pp. 167-178.
  • [9] — and S. Zontek, On the structure of admissible linear estimators, J. Multivariate Anal. 24 (1988), pp. 11-30.
  • [10] L. R. LaMotte, On admissibility and completeness of linear unbiased estimators in a general linear model, J. Amer. Statist Assoc. 72 (1977), pp. 438-441.
  • [11] — Admissibility in linear estimation, Ann. Statist. 10 (1982), pp. 245-256.
  • [12] F. Y. Lin and T. S. Yong, Necessary and sufficient conditions that linear estimators of a mixed effects linear model are admissible under matrix loss function, Statistics 24 (1993), pp. 303-309.
  • [13] Th. Mathew, C. R. Rao and В. K. Sinha, Admissible linear estimation in singular linear models, Comm. Statist. A — Theory Methods 13 (1984), pp. 3033-3045.
  • [14] A. Olsen, J. Seely and D. Birkes, Invariant quadratic unbiased estimation for two variance components, Ann. Statist. 4 (1976), pp. 878-890.
  • [15] X L. Philoche, A propos du théoreme de Gauss-Markov, Ann. Inst. H. Poincare 4 (1971), pp. 271-281.
  • [16] C. R. Rao, Unified theory of least squares, Comm. Statist. 1 (1972), pp. 1-8.
  • [17] — Estimation of parameters in a linear model, Ann. Statist. 4 (1976), pp. 1023-1037. Correction, ibidem 7 (1979), p. 696.
  • [18] J.-J. Téchené, Une introduction á la théorie genérale de l’approximation quadratique d’une application linéaire, Probab. Math. Statist. 15 (1995), pp. 469-492.
  • [19] — Sur la notion de projection orthogonale dans un espace semi-euclidien, Linear Algebra Appl., Fifth Special Issue on Linear Algebra and Statistics (1996), pp. 239-268.
  • [20] — Les aspects fondamentaux de l’admissibilité en approximation quadratique d‘applications linéaires, Linear Algebra Appl., Sixth Special Issue on Linear Algebra and Statistics (1997), pp. 389-419.
  • [21] — Logique des moindres-carrés et inference statistique, These de Doctorat d’Etat, Université de Pau et des Pays de l’Adour, France, 1994.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b59cda8-e4d5-472e-a091-faeba1f97c7e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.