PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Volcanic Deposits Thickness and Distance from Mt Semeru Crater Strongly Affected Phosphate Solubilizing Bacteria Population and Soil Organic Carbon

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Volcanic eruptions cause large-scale damage and leave piles of volcanic material that destroy plants, agricultural lands, animals, and soil microorganisms, decreasing soil fertility. Therefore, it is necessary to accelerate soil fertility recovery in post-volcanic eruption areas to resume agricultural activities. This study aims to elucidate the effect of volcanic deposits on soil fertility as well as explore tolerant plants and bacteria after Mt Semeru eruption. Soil, volcanic ash, and plant samples were collected from Pronojiwo Sub-regency, Lumajang Regency, East Java, Indonesia. Soil and volcanic ash chemical properties were analyzed (pH, available and total phosphorus (P), potassium (K), magnesium (Mg), and calcium (Ca) content). Bacteria were isolated and enumerated, then tested for P solubilization (PSB). The result showed that 3 months after Mt Semeru’s eruption, the first succession was fern, moss, and fungi. Some local plants (banana and coconut) emerge new shoots and recover. A high total P (137.32 mg/kg) with neutral pH 6.8 was found in the volcanic ash. Total P and available P were higher at the closest distance from the crater, and soil pH controlled P availability in the soil covered with volcanic deposits. Also, the thickness and distance from the crater strongly affect organic C, which reduces the PSB population from 103 to 104 CFU/g, compared to unaffected areas. The bacteria exhibited P solubilization activities even under harsh environmental conditions. Thus, accelerating soil fertility restoration by adding organic materials and inoculating beneficial bacteria (such as PSB) in the post-eruption area is essential as the bacteria benefit both soil fertility recovery and agriculture sustainability in degraded lands (e.g., post-eruption).
Rocznik
Strony
360--368
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Soil Science Department, Faculty of Agriculture, Brawijaya University, Jl Veteran, Malang, 65145, Indonesia
  • Study Program of Agroecotechnology, Faculty of Agriculture, Brawijaya University, Jl Veteran, Malang, 65145, Indonesia
  • Master Program of Soil and Water Management, Faculty of Agriculture, Brawijaya University, Jl Veteran, Malang, 65145, Indonesia
  • Soil Science Department, Faculty of Agriculture, Brawijaya University, Jl Veteran, Malang, 65145, Indonesia
  • Soil Science Department, Faculty of Agriculture, Brawijaya University, Jl Veteran, Malang, 65145, Indonesia
Bibliografia
  • 1. Alori E.T., Glick B.R. and Babalola O.O. 2017. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology, 8(JUN), 1–8.
  • 2. Bai L., Yang Y., Shi Z., Zou Y., Zhou H. and Jia J. 2022. Improvement of low-fertility soils from a coal mining subsidence area by immobilized nitrogen-fixing bacteria. Processes, 10(6).
  • 3. Berenstecher P., Gangi D., González-Arzac A., Martínez M.L., Chaves E.J., Mondino E.A. and Austin, A.T. 2017. Litter microbial and soil faunal communities stimulated in the wake of a volcanic eruption in a semi-arid woodland in Patagonia, Argentina. Functional Ecology, 31(1), 245–259.
  • 4. Biedendieck R., Knuuti T., Moore, S.J. and Jahn, D. 2021. The “beauty in the beast”— the multiple uses of Priestia megaterium in biotechnology. 5719–5737.
  • 5. Blake C., Christensen M.N. and Kov T. 2021. Molecular aspects of plant growth promotion and protection by Bacillus subtilis. 34(1), 15–25.
  • 6. Cappuccino, J.G. and Welsh C. 2017. Microbiology: A Laboratory Manual.
  • 7. Castro R.O., Cantero, E.V. Bucio J.L. 2008. Plant growth promotion by Bacillus megaterium involves cytokinin signaling. April, 263–265.
  • 8. Crowe S.A., Antoniewicz M.R., Hinrichs K. and Maresca J.A. 2018. Diverse Sources of Phosphorus. 18(2), 656–667.
  • 9. Detikcom. 2021. Peristiwa Pilu Erupsi Gunung Semeru di Penghujung Tahun 2021. 1–5. https://news.detik.com/berita-jawa-timur/d-5877972/peristiwa-pilu-erupsi-gunung-semeru-di-penghujung-ta-hun-2021/2 (in Indonesian)
  • 10. Djuuna I .A. F., Prabawardani S. and Massora M. 2022. Population distribution of phosphate-solubilizing microorganisms in agricultural soil. Microbes and Environments, 37(1), 1–8.
  • 11. Fiantis D., Ginting F.I., Gusnidar N.M. and Minasny B. 2019. Volcanic Ash, insecurity for the people but securing fertile soil for the future. Sustainability (Switzerland), 11(11).
  • 12. Guo Y., Nishizawa T., Sakagami N., Fujimura R., Kamijo T. and Ohta, H. 2021. Root bacteriome of a pioneer grass Miscanthus condensatus along restored vegetation on recent Miyake-jima volcanic deposits. Rhizosphere, 19(August), 100422.
  • 13. Hashem A., Tabassum B. and Fathi A.E. 2019. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal of Biological Sciences, 26(6), 1291–1297.
  • 14. Jacoby R., Peukert M., Succurro A., Koprivova A. and Kopriva, S. 2017. The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Frontiers in Plant Science, 8(September), 1–19.
  • 15. Lathifah A.N., Guo Y., Sakagami N., Suda W., Higuchi M., Nishizawa T., Prijambada I.D. and Ohta H. 2019. Comparative characterization of bacterial communities in moss-covered and unvegetated volcanic deposits of mount Merapi, Indonesia. Microbes and Environments, 34(3), 268–277.
  • 16. Lestiani D.D., Apryani R., Lestari L., Santoso M., Hadisantoso E.P. and Kurniawati S. 2018. Characteristics of trace elements in volcanic ash of kelud eruption in East Java, Indonesia. Indonesian Journal of Chemistry, 18(3), 457–463.
  • 17. Lung W. and Hoang N. 2017. Survey the composition and distribution of fungi species in the natural reserve Wetland Lung Ngoc Hoang, Vietnam. Journal of Advances in Technology and Engineering Research, 3(1), 19–26.
  • 18. Margalef O., Sardans J., Fernández-Martínez M., Molowny-Horas R., Janssens I.A., Ciais P., Goll D., Richter A., Obersteiner M., Asensio D. and Peñuelas J. 2017. Global patterns of phosphatase activity in natural soils. Scientific Reports, 7(1), 1–13.
  • 19. Masum M. and Ali A.M. 2019. The pacific ring of fire is working as a home country of geothermal resources in the World. IOP Conference Series: Earth and Environmental Science, 249(1).
  • 20. Rincón-Molina, Clara I., Martínez-Romero, E., Ruiz-Valdiviezo, V. M., Velázquez, E., Ruiz-Lau, N., Rogel-Hernández, M. A., Villalobos-Maldonado, J. J., & Rincón-Rosales, R. 2020. Plant growth-promoting potential of bacteria associated to pioneer plants from an active volcanic site of Chiapas (Mexico). Applied Soil Ecology, 146(October 2019), 103390. https://doi.org/10.1016/j.apsoil.2019.103390
  • 21. Rincón-Molina C.I., Martínez-Romero E., Aguirre-Noyola J.L., Manzano-Gómez L.A., Zenteno- Rojas A., Rogel M.A., Rincón-Molina F.A., Ruíz-Valdiviezo V.M. and Rincón-Rosales R. 2022. Bacterial community with plant growth-promoting potential associated to pioneer plants from an active mexican volcanic complex. Microorganisms, 10(8).
  • 22. Shirouzu T., Osono T. and Hirose D. 2014. Resource utilization of wood decomposers: Mycelium nuclear phases and host tree species affect wood decomposition by Dacrymycetes. Fungal Ecology, 9(1), 11–16.
  • 23. Smithsonian Institution. 2022. Semeru. Global Volcanism Program. https://volcano.si.edu/volcano.cfm?vn=263300
  • 24. Sun Y., Goll D.S., Ciais P., Peng S., Margalef O., Asensio D., Sardans J. and Peñuelas J. 2020. Spatial pattern and environmental drivers of acid phosphatase activity in Europe. Frontiers in Big Data, 2(January), 1–13.
  • 25. Utami, S.R., Agustina C., Wicaksono K.S., Prasojo, B.D. and Hanifa H. 2017. Utilization of locally available organic matter to improve chemical properties of pyroclastic materials from Mt. Kelud of East Java. Journal of Degraded and Mining Lands Management, 4(2), 717–721.
  • 26. Ustiatik R., Nuraini Y., Suharjono and Handayanto E. 2021a. Isolation of mercury-resistant endophytic and rhizosphere microorganisms from grasses in abandoned gold mining area. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 49(1), 97–104.
  • 27. Ustiatik R., Nuraini Y., Suharjono and Handayanto E. 2021b. Siderophore Production of the Hg- Resistant Endophytic Bacteria Isolated from Local Grass in the Hg-Contaminated Soil. Journal of Ecological Engineering, 22(5), 129–138. https://doi.org/10.12911/22998993/135861
  • 28. Ustiatik R., Nuraini Y., Suharjono S., Jeyakumar P., Anderson C.W.N. and Handayanto E. 2022a. Endophytic bacteria promote biomass production and mercury-bioaccumulation of Bermuda grass and Indian goosegrass. International Journal of Phytoremediation, 24(11), 1184–1192. https://doi.org/10.1080/15226514.2021.2023461
  • 29. Ustiatik R., Nuraini Y., Suharjono S., Jeyakumar P., Anderson C.W.N. and Handayanto E. 2022b. Mercury resistance and plant growth promoting traits of endophytic bacteria isolated from mercury-contaminated soil. Bioremediation Journal, 26(3), 208–227.
  • 30. Utami S.R., Suntari R., Agustina C. and Kusumarini N. 2019. Improving nutrient availability in pyroclastic materials from Mount Kelud using organic and inorganic amendments. J. Degrade. Min. Land Manage, 7(1), 1987–1993.
  • 31. Voi.id. 2021. Know the Dangers of Volcanic Materials when Mount Semeru Erupts. 9–12.
  • 32. Widdig M., Schleuss P.M., Weig A.R., Guhr A., Biederman L.A., Borer E.T., Crawley M.J., Kirkman K.P., Seabloom E.W., Wragg P.D. and Spohn M. 2019. Nitrogen and phosphorus additions alter the abundance of phosphorus-solubilizing bacteria and phosphatase activity in grassland soils. Frontiers in Environmental Science, 7(Nov.), 1–15.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b53c92b-d71f-460a-a6cc-168c02a1fe43
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.