PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Magnetic susceptibility spatial distribution as an indicator of soil pollution in the area of Opole city

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Rozkład przestrzenny podatności magnetycznej jako wskaźnika zanieczyszczenia gleb na terenie miasta Opola
Języki publikacji
EN
Abstrakty
EN
Soil magnetometry, based on topsoil magnetic susceptibility measurement, has been proven in the literature to be very useful and increasingly applicable screening technique of soils affected by anthropogenic pressure. According to the literature data, this method requires further improvement, especially in the field of magnetometric imaging techniques. The aim of the study was assessment of magnetic transformations of soils in the city of Opole (Opolskie Voivodeship) using soil magnetometry and three magnetometric data interpolation techniques (natural neighbour NN, inverse distance weightening IDW and ordinary kriging OK). The data was collected during field measurements of magnetic susceptibility, carried out in an area of 7.1 km2, in a network of 124 measurement points, in the year 2015. The location of the points was determined using the Garmin GPS GPSMap 64st device, and the magnetometric measurements were performed in situ using the MS2 meter and the MS2D sensor from Bartington Instruments. The research showed high values of magnetic susceptibility and occurrence of soil magnetic anomalies in the study area. This was accompanied by geochemical transformations of soils, revealed in previous research. The results suggest that it could be caused by the long-term deposition of cement dusts, emitted in increased quantities in former times by the cement plant, which has left its footprint in the environment. When analyzing the usefulness of the magnetometric data interpolation techniques, the IDW technique best reflected the spatial distribution of magnetic susceptibility in the study area, while the technique of OK, due to the so-called smoothing effect, turned out to be less useful.
PL
Magnetometria glebowa, polegająca na pomiarze podatności magnetycznej wierzchniej warstwy gleby, jest bardzo przydatną i coraz powszechniej stosowaną techniką monitorowania stanu gleb objętych wpływem antropopresji. Jak wynika z danych literaturowych, metoda ta wymaga dalszego udoskonalania, szczególnie w zakresie technik obrazowania danych magnetometrycznych. Celem badań była ocena przekształceń magnetycznych gleb na terenie miasta Opola (woj. opolskie) z zastosowaniem magnetometrii glebowej oraz trzech technik interpolacji danych magnetometrycznych (naturalnego sąsiedztwa NN, ważonych odwrotnych odległości IDW oraz krigingu zwykłego OK). Dane zostały zgromadzone podczas pomiarów terenowych podatności magnetycznej, wykonanych na powierzchni 7,1 km2, w sieci 124 punktów pomiarowych, w 2015 r. Lokalizacje punktów określono za pomocą urządzenia Garmin GPS GPSMap 64st, a pomiary magnetometryczne wykonano in situ za pomocą miernika MS2 i czujnika MS2D firmy Bartington Instruments. Badania wykazały wysokie wartości podatności magnetycznej oraz występowanie glebowych anomalii magnetycznych na badanym terenie. Towarzyszą temu przekształcenia geochemiczne gleb, wykazane we wcześniejszych badaniach. Wyniki sugerują, że przyczyną tego stanu mogła być długoletnia depozycja pyłów cementowych, emitowanych w latach ubiegłych w zwiększonej ilości przez cementownię, która pozostawiła swój ślad w środowisku. Analizując przydatność zastosowanych technik interpolacji danych magnetometrycznych, technika IDW najlepiej odzwierciedlała rozkład przestrzenny podatności magnetycznej na badanym terenie, podczas gdy technika OK, z powodu tzw. efektu wygładzającego, okazała się mniej przydatna.
Rocznik
Strony
167--185
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Faculty of Natural Sciences and Technology, University of Opole, Oleska 22, 45-052 Opole, Poland, phone: +48 77 401 60 01, fax: +48 77 401 60 30
  • Faculty of Natural Sciences and Technology, University of Opole, Oleska 22, 45-052 Opole, Poland, phone: +48 77 401 60 01, fax: +48 77 401 60 30
Bibliografia
  • [1] Rajfur M, Krems P, Kłos A, Kozłowski R, Józwiak MA, Kříž J, Wacławek M. Application of algae in active biomonitoring of the selected holding reservoirs in Swietokrzyskie province. Ecol Chem Eng S. 2016;23(2):237-247. DOI: 10.1515/eces-2016-0016.
  • [2] Rajfur M, Świslowski P, Nowainski F, Śmiechowicz B. Mosses as biomonitor of air pollution with analytes originating from tobacco smoke. CDEM, 2018;23(1-2):127-136. DOI: 10.1515/cdem-2018-0008.
  • [3] Magiera T, Jabłońska M, Strzyszcz Z, Rachwał M. Morphological and mineralogical forms of technogenic magnetic particles in industrial dusts. Atmos Environ. 2011;(45):281-290. DOI: 10.1016/j.atmosenv.2011.04.076.
  • [4] Magiera T, Gołuchowska B, Jablońska M. Technogenic Magnetic Particles in Alkaline Dusts from Power and Cement Plants. Water Air Soil Pollut. 2013;224(1):1389. DOI: 10.1007/s11270-012-1389-9.
  • [5] Szuszkiewicz M, Magiera T, Kapicka A, Petrovsky E, Grison H, Gołuchowska B. Magnetic characteristics of industrial dust from different sources of emission: A case study of Poland. J Appl Geophys. 2015;116:84-92. DOI: 10.1016/j.jappgeo.2015.02.027.
  • [6] Strzyszcz Z. Magnetic Susceptibility of Soils in the Areas Influenced by Industrial Emissions. Soil Monitoring: Early Detection and Surveying of Soil Contamination and Degradation. In: Schulin R, Desaules A, Webster R, Vonsteiger B. eds. Book Series: Monte Verita. Proc. of the Centro Stefano Franscini Ascona;1993:255-269. ISBN 978-3-0348-7544-8.
  • [7] Strzyszcz Z, Magiera T, Heller F. The Influence of Industrial Immissions on the Magnetic Susceptibility of Soils in Upper Silesia. Stud Geophys Geod. 1996;40(3):276-286. DOI: 10.1007/BF02300743.
  • [8] Lecoanet H, Leveque F, Segura S. Magnetic susceptibility in environmental applications: comparison of field probes. Phys Earth Planet In, 1999;115:191-204. DOI: 10.1016/S0031-9201(99)00066-7.
  • [9] Magiera T, Strzyszcz Z, Kapicka A, Petrovsky E. Discrimination of lithogenic and anthropogenic influences on topsoil magnetic susceptibility in Central Europe. Magprox Team Geoderma. 2005;130(3-4):299-311. DOI: 10.1016/j.geoderma.2005.02.002.
  • [10] Magiera T, Strzyszcz Z, Rachwał M. Mapping particulate pollution loads using soil magnetometry in urban forests in the Upper Silesia Industrial Region, Poland. Forest Ecol Manage. 2007;248(1-2):36-42. DOI: 10.1016/j.foreco.2007.02.034.
  • [11] Magiera T, Parzentny H, £ukasik A. The influence of the wind direction and plants on the variability of topsoil magnetic susceptibility in industrial and urban areas of southern Poland. Environ Earth Sci. 2016;75(3,213). DOI: 10.1007/s12665-015-4846-0.
  • [12] D’Emilio M, Chianese, D., Coppola, R. et al. Magnetic susceptibility measurements as proxy method to monitor soil pollution: development of experimental protocols for field surveys Environ Monit Assess. 2007;125(1-3):137-146. DOI: 10.1007/s10661-006-9246-1.
  • [13] Jordanova N, Jordanova D, Tsacheva T. Application of magnetometry for delineation of anthropogenic pollution in areas covered by various soil types. Geoderma. 2008;144(3-4):557-571. DOI: 10.1016/j.geoderma.2008.01.021.
  • [14] Kapicka A, Petrovsky E, Fialová H, Podrazsky V, Dvorak I. High resolution mapping of anthropogenic pollution in the Giant Mountains National Park using soil magnetometry. Stud Geophys Geod. 2008;52(2): 271-284. DOI: 10.1007/s11200-008-0018-y.
  • [15] Goldena N, Zhanga C, Potito AP, Gibson PJ, Bargary N, Morrison L. Impact of grass cover on the magnetic susceptibility measurements for assessing metal contamination in urban topsoil. Environ Res. 2017;155:294-306. DOI: 10.1016/j.envres.2017.02.032.
  • [16] Tan Z, Han Y, Cao J, Huang CC, An Z.Holocene wildfire history and human activity from high-resolution charcoal and elemental black carbon records in the Guanzhong Basin of the Loess Plateau, China. Quaternary Sci Rev. 2015;109:76-87. DOI: 10.1016/j.quascirev.2014.11.013.
  • [17] Saepuloh A, Haeruddin H, Nur Heriawan M, Kubo T, Koike K, Malik D. Application of lineament density extracted from dual orbit of synthetic aperture radar (SAR) images to detecting fluids paths in the Wayang Windu geothermal field (West Java, Indonesia). Geothermics. 2018;72:145-155. DOI: 10.1016./j.geothermics.2017.11.010.
  • [18] Petrovsky E, Remes J, Kapicka A, Podrazsky V, Grison H, Boruvka L. Magnetic mapping of distribution of wood ash used for fertilization of forest soil. Sci Total Environ. 2018;626:228-234. DOI: 10.1016/j.scitotenv.2018.01.095.
  • [19] Strzyszcz Z., Magiera T. Record of industrial pollution in Polish ombrotrophic peat bogs. Phys Chem Earth. 2001;26(11-12):859-866. DOI: 10.1016/S1464-1895(01)00133-8.
  • [20] Strzyszcz Z, Rachwał M. Zastosowanie magnetometrii do monitoringu i oceny ekologicznej gleb na obszarach objętych wpływem emisji przemysłowych (Application of magnetometry for monitoring and ecological assessment of soils in areas affected by industrial emissions). Zabrze: Inst Environ Eng PAS; 2010;78. PL ISSN 0208-4112. ISBN 978-83-60877-60-9.
  • [21] Fabijanczyk P, Zawadzki J, Magiera T, Szuszkiewicz M. A methodology of integration of magnetometric and geochemical soil contamination measurements. Geoderma. 2016;277:51-60. DOI: 10.1016/j.geoderma.2016.05.009.
  • [22] Fabijanczyk P, Zawadzki J, Magiera T. Magnetometric assessment of soil contamination in problematic area using empirical Bayesian and indicator kriging: A case study in Upper Silesia, Poland. Geoderma. 2017;308:69-77. DOI: 10.1016/j.geoderma.2017.08.029.
  • [23] Rachwal M, Kardel K, Magiera T, Bens O. Application of magnetic susceptibility in assessment of heavy metal contamination of Saxonian soil (Germany) caused by industrial dust deposition. Geoderma. 2017;295:10-21. DOI: 10.1016/j.geoderma.2017.02.0070016-7061.
  • [24] Li J, Heap AD. A Review of Spatial Interpolation Methods for Environmental Scientists. Geoscience Australia, Record 2008;23:137 pages.
  • [25] Statistics of Opole). Statistical Office in Opole, Opole 2018. ISSN 2451-1390. http://opole.stat.gov.pl.
  • [26] Kondracki J. Geografia regionalna Polski (Regional geography of Poland). Warszawa: PWN; 2011. ISBN 9788301160227.
  • [27] The Odra Cement Plant – 1911-2011, 100 years which cemented our success). OPOLGRAF SA Ed., Opole, 2011, K. Kownacka – text preparation. (in Polish and German).
  • [28] Wackernagel H. Multivariate Geostatistics, An Introduction with Applications. Third ed. Berlin- Heidelberg: Springer-Verlag; 2003. ISBN: 978-3-642-07911-5. DOI: 10.1007/978-3-662-05294-5
  • [29] Roznik M, Porth CB, Porth L, Boyd M, Roznik K. Improving agricultural microinsurance by applying universal kriging and generalised additive models for interpolation of mean daily temperature. The Geneva Papers on Risk and Insurance – Issues and Practice, 2019. DOI: 10.1057/s41288-019-00127-9
  • [30] Krige DG. A Statistical Approaches to Some Basic Mine Valuation Problems on the Witwatersrand. J S AFR I MIN METALL. 1951;52:119-139.
  • [31] Isaaks EH, Srivastava RM. An Introduction to Apllied Geostatistics. New York: Oxford University Press; 1989. https://pl.scribd.com/document/266290280.
  • [32] Yajie H, Zhen L, Huichun Y, Shiwen Z, Zhiqing Z, An X, Yuanfang H. Mapping Soil Electrical Conductivity Using Ordinary Kriging Combined with Back-propagation Network. Chinese Geogr Sci. 2019;29(2):270-282. DOI: 10.1007/s11769-019-1027.
  • [33] Abe1 OE, Rabiu AB, Bolaji OS, Oyeyemi EO. Modeling African equatorial ionosphere using ordinary Kriging interpolation technique for GNSS applications. Astrophys Space Sci. 2018; 363:168. DOI: 10.1007/s10509-018-3387-x.
  • [34] El-Shejmy N, Valeo C, Habib A. Digital Terrain Modeling: Acquisition, Manipulation and Applications. Artech House Remote Sensing Library. Artech House, Inc. Norwood 2005, 270 pages. ISBN 1-58053-921-1.
  • [35] Gold C. Spatial context. An introduction to fundamental computer algorithms for spatial analysis, 1st Edition. International Society for Photogrammetry and Remote Sensing Book Series, CRC Press; 2016. ISBN 9781138029637.
  • [36] Zawadzki J, Fabijanczyk P, Magiera T, Rachwal M. Geostatistical Microscale Study of Magnetic Susceptibility in Soil Profile and Magnetic Indicators of Potential Soil Pollution. Water Air Soil Pollut. 2015;226:142. DOI 10.1007/s11270-015-2395.
  • [37] Jaworowicz A, Liberska-Szmidt H, Grzybowski J. Udział cementowni opolskich w stanie zanieczyszczenia powietrza na terenie miasta Opola (Share of cement plants of Opole in the state of air pollution in the area of the city of Opole). CWG 1970;9-70:272-278.
  • [38] Kusza G, Ciesielczuk T, Gołuchowska B. Zawartość wybranych metali ciężkich w glebach obszarów przyległych do zakładów przemysłu cementowego w mieście Opolu (Content of chosen heavy metals in soils of areas adjacent to cement plants in the city of Opole). Ochr Środ Zasob Nat 2009;40:70-75.
  • [39] Ghiasi Y, Nafisi V. The improvement of strain estimation using universal kriging. Acta Geod Geophys. 2015;50:479-490. DOI 10.1007/s40328-015-0103-y.
  • [40] Qiao P, Lei M, Yang S, Yang J, Guo G, Zhou X. Comparing ordinary kriging and inverse distance weighting for soil as pollution in Beijing. Environ Sci Pollut Res. 2018;25(16):15597-15608. DOI: 10.1007/s11356-018-1552-y
  • [41] V Annual reports on the state of the environment for the years 2007-2017. Voivodeship Inspectorate of Environmental Protection (WIOS) in Opole. http://www.opole.pios.gov.pl
  • [42] Regulation of the Minister for the Environment of 26 January 2010 on reference values for certain airborne substances. Appendix No. 1. J Laws 2010, No. 16, Item 87, page 1252).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b51db01-6f22-4b70-bef7-c68d48aa65a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.