Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Tuolaishan-Lenglongling fault (TLSF-LLLF) is located in the middle-western segment of the Qilian-Haiyuan fault zone. The 2022 Menyuan Mw 6.7 earthquake that occurred in the TLSF-LLLF highlights the urgent need for understanding the mechanical property and seismicity over this fault segment. In this study, Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) technique was used to process Sentinel-1 acquisitions covering the TLSF-LLLF fault from 2016 to 2022 to determine the interseismic velocity field along the satellite line-of-sight. The interseismic deformation field confirmed the absence of surface creep behavior across the whole TLSF-LLLF segment. Then, we utilized both the screw dislocation and block modeling strategies to invert the comprehensive spatial distribution of fault slip rate and locking depth across the TLSF-LLLF fault. The new fault locking model, constrained by all GNSS and InSAR measurements, suggests comparable fault slip rates between 4.7 and 5.6 mm/yr in the TLSF-LLLF segment, which is generally consistent with longterm geological slip rates. The locking depth increases gradually from 8 km in the western segment of the TLSF to 18 km in the eastern segment, while the locking depth for most sections of the LLLF is relatively deep (15-18 km), indicating existence of asperities on the locking along the TLSF-LLLF fault zone. In particular, a fault segment with obvious shallow locking depth was identified in the stepover region where the TLSF and LLLF intersect. The shallow locking section shows a good spatial correlation with the coseismic rupture of the 2022 Menyuan earthquake. The calculated moment rate deficit suggests that the TLSF is capable of producing an Mw 7.3 earthquake given the high seismic moment accumulation rate and a lack of small-to-moderate earthquakes.
Wydawca
Czasopismo
Rocznik
Tom
Strony
143--161
Opis fizyczny
Bibliogr. 80 poz.
Twórcy
autor
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
autor
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
- Wuhan Gravitation and Solid Earth Tides, National Observation and Research Station, Wuhan 430071, China
autor
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
autor
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
autor
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
autor
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
autor
- China Energy Engineering Group Anhui Electric Power Design Institute Co., LTD, Hefei 230041, China
Bibliografia
- 1. Avouac J-P (2015) From geodetic imaging of seismic and aseismic fault slip to dynamic modeling of the seismic cycle. Annu Rev Earth Planet Sci 43:233-271. https://doi.org/10.1146/annur ev-earth-060614-105302
- 2. Avouac J-P, Tapponnier P (1993) Kinematic model of active deformation in central asia. Geophys Res Lett 20:895-898. https://doi.org/ 10.1029/93GL00128
- 3. Avouac J-P, Meng L, Wei S et al (2015) Lower edge of locked main himalayan thrust unzipped by the 2015 gorkha earthquake. Nat Geosci 8:708-711. https://doi.org/10.1038/ngeo2518
- 4. Bekaert DPS, Walters RJ, Wright TJ et al (2015) Statistical comparison of InSAR tropospheric correction techniques. Remote Sens Environ 170:40-47. https://doi.org/10.1016/j.rse.2015.08.035
- 5. Bletery Q, Cavalie O, Nocquet J, Ragon T (2020) Distribution of interseismic coupling along the north and east anatolian faults inferred from InSAR and GPS data. Geophys Res Lett 47:e2020GL08775. https://doi.org/10.1029/2020GL087775
- 6. Burchfiel BC, Zhang P, Wang Y et al (1991) Geology of the haiyuan fault zone, ningxia-hui autonomous region, china, and its relation to the evolution of the northeastern margin of the tibetan plateau. Tectonics 10:1091-1110. https://doi.org/10.1029/90TC02685
- 7. Burgmann R, Kogan MG, Steblov GM et al (2005) Interseismic coupling and asperity distribution along the kamchatka subduction zone. J Geophy Res: Sol Earth 110:B7. https://doi.org/10.1029/ 2005JB003648
- 8. Cakir Z, Ergintav S, Akoglu AM et al (2014) InSAR velocity field across the North Anatolian fault: implications for the loading and release of interseismic strain accumulation. J Geophys Res: Sol Earth 119:7934-7943. https://doi.org/10.1002/2014JB011360
- 9. Cavalie O, Lasserre C, Doin M-P et al (2008) Measurement of interseismic strain across the haiyuan fault, by InSAR. Earth Planet Sci Lett 275:246-257. https://doi.org/10.1016/j.epsl.2008.07.057
- 10. Chlieh M, Avouac JP, Sieh K et al (2008) Heterogeneous coupling of the sumatran megathrust constrained by geodetic and paleogeodetic measurements. J Geophys Res 113:B05305. https://doi.org/ 10.1029/2007JB004981
- 11. Chlieh M, Perfettini H, Tavera H et al (2011) Interseismic coupling and seismic potential along the central andes subduction zone. J Geophys Res: Sol Earth 116:B12. https://doi.org/10.1029/2010J B008166
- 12. Deng Q, Chen S, Song F et al (1986) Variations in the geometry and amount of slip on the haiyuan fault zone, china and the surface rupture of the 1920 haiyuan earthquake. Earthq Sour Mech 37:169-182. https://doi.org/10.1029/GM037p0169
- 13. Dianala JDB, Jolivet R, Thomas MY et al (2020) The relationship between seismic and aseismic slip on the philippine fault on leyte island: bayesian modeling of fault slip and geothermal subsidence. J Geophys Res: Sol Earth 125:e2020JB020052. https://doi.org/10. 1029/2020JB020052
- 14. Diao F, Walter TR, Solaro G et al (2016) Fault locking near Istanbul: indication of earthquake potential from InSAR and GPS observations. Geophys J Int 205:490-498. https://doi.org/10. 1093/gji/ggw048
- 15. Duvall AR, Clark MK (2010) Dissipation of fast strike-slip faulting within and beyond northeastern tibet. Geology 38:223-226. https://doi.org/10.1130/G30711.1
- 16. England P, Molnar P (1997) Active deformation of asia: from kinematics to dynamics. Science 278:647-650. https://doi.org/10. 1126/science.278.5338.647
- 17. Farr TG, Rosen PA, Caro E et al (2007) The shuttle radar topography mission. Geophys J Int 45:RG2004. https://doi.org/10. 1029/2005RG000183
- 18. Feng W, He X, Zhang Y et al (2023) Seismic faults of the 2022 Mw 6.6 menyuan, qinghai earthquake and their implication for the regionalseismogenic structures. Chin Sci Bull 68:254-270. https://doi.org/10.1360/TB-2022-0154
- 19. Fialko Y, Simons M, Agnew D (2001) The complete (3-D) surface displacement field in the epicentral area of the 1999 Mw 7.1 hector mine earthquake, california, from space geodetic observations. Geophys Res Lett 28:3063-3066. https://doi.org/10. 1029/2001GL013174
- 20. Gao F, Zielke O, Han Z et al (2022) Faulted landforms, slip-rate, and tectonic implications of the eastern Lenglongling fault, northeastern tibetan plateau. Tectonophysics 823:229195. https://doi. org/10.1016/j.tecto.2021.229195
- 21. Gaudemer Y, Tapponnier P, Meyer B et al (1995) Partitioning of crustal slip between linked, active faults in the eastern qilian shan, and evidence for a major seismic gap, the ‘Tianzhu gap’, on the western Haiyuan Fault, Gansu. Geophys J Int 120:599645. https://doi.org/10.1111/j.1365-246X.1995.tb01842.x
- 22. Guo P, Han Z, Mao Z et al (2019) Paleoearthquakes and rupture behavior of the lenglongling fault: implications for seismic hazards of the northeastern margin of the tibetan plateau. J Geophys Res: Sol Earth 124:1520-1543. https://doi.org/10.1029/ 2018JB016586
- 23. Guo P, Han Z, Gao F et al (2020) A new tectonic model for the 1927 m 8.0 gulang earthquake on the ne tibetan plateau. Tectonics 39(9):e2020TC006064. https://doi.org/10.1029/2020TC006064
- 24. Hao M, Wang Q, Shen Z et al (2014) Present day crustal vertical movement inferred from precise leveling data in eastern margin of tibetan plateau. Tectonophysics 632:281-292. https://doi.org/10.1016/j.tecto.2014.06.016
- 25. He WG, Yuan DY, Ge WP, Luo H (2010) Determination of the slip rate of the lenglongling fault in the middle and eastern segments of the qilian mountain active fault zone. Earthquake 30:131-137
- 26. He X, Zhang Y, Shen X et al (2020) Examination of the repeatability of two Ms6.4 menyuan earthquakes in Qilian-haiyuan fault zone based on source parameters. Phys Earth Planet Inter 299:106408. https://doi.org/10.1016/j.pepi.2019.106408
- 27. He P, Liu C, Wen Y et al (2023) The 2022 Mw 6.6 menyuan earthquake in the northwest margin of tibet: geodetic and seismic evidence of the fault structure and slip behavior of the Qilianhaiyuan strike-slip fault. Seismol Res Lett 94:26-38. https://doi. org/10.1785/0220220192
- 28. He L, Feng G, Li Z et al (2024) Interseismic kinematics along the Tuolaishan-Lenglongling fault determined by Sentinel-1 InSAR observations. Tectonophysics 870:230152. https://doi.org/10. 1016/j.tecto.2023.230152
- 29. Hooper A, Segall P, Zebker H (2007) Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to volcan alcedo. Galap J Geophys Res 112:B07407. https://doi.org/10.1029/2006JB004763
- 30. Hooper A, Bekaert D, Spaans K, Arikan M (2012) Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 514-517:1-13. https://doi.org/10.1016/j.tecto.2011.10.013
- 31. Hooper AJ (2006). Persistent scatter radar interferometry for crustal deformation studies and modeling of volcanic deformation. Stan¬ford University
- 32. Huang Z, Zhou Y, Qiao X et al (2022) Kinematics of the -1000 km haiyuan fault system in northeastern tibet from high-resolution Sentinel-1 InSAR velocities: fault architecture, slip rates, and partitioning. Earth Planet Sci Lett 583:117450. https://doi.org/ 10.1016/j.epsl.2022.117450
- 33. Hussain E, Hooper A, Wright TJ et al (2016) Interseismic strain accumulation across the central north anatolian fault from iteratively unwrapped InSAR measurements. J Geophys Res: Sol Earth 121:9000-9019. https://doi.org/10.1002/2016JB013108
- 34. Hussain E, Wright TJ, Walters RJ et al (2018) Constant strain accumulation rate between major earthquakes on the north anatolian fault. Nat Commun 9:1392. https://doi. org/10. 1038/ s41467-018-03739-2
- 35. Jiang W, Han Z, Guo P et al (2017) Slip rate and recurrence intervals of the east lenglongling fault constrained by morphotectonics: tectonic implications for the northeastern tibetan plateau. Lithosphere 9:417-430. https://doi.org/10.1130/L597.1
- 36. Jolivet R, Lasserre C, Doin M-P et al (2012) Shallow creep on the haiyuan fault revealed by SAR Interferometry. J Geophys Res: Solid Earth 117:B6. https://doi.org/10.1029/2011JB008732
- 37. Jolivet R, Simons M, Agram PS et al (2015) Aseismic slip and seismogenic coupling along the central san andreas fault. Geophys Res Lett 42:297-306. https://doi.org/10.1002/2014GL062222
- 38. Kaneko Y, Avouac J-P, Lapusta N (2010) Towards inferring earthquake patterns from geodetic observations of interseismic coupling. Nat Geosci 3:363-369. https://doi.org/10.1038/ngeo843
- 39. Konca AO, Avouac J-P, Sladen A et al (2008) Partial rupture of a locked patch of the sumatra megathrust during the 2007 earthquake sequence. Nature 456:631-635. https://doi.org/10.1038/ nature07572
- 40. Lasserre C, Morel P-H, Gaudemer Y et al (1999) Postglacial left slip rate and past occurrence of M >8 earthquakes on the western haiyuan fault, gansu, china. J Geophys Res: Sol Earth 104:1763317651. https://doi.org/10.1029/1998JB900082
- 41. Lasserre C, Gaudemer Y, Tapponnier P et al (2002) Fast late Pleistocene slip rate on the leng long ling segment of the haiyuan fault, qinghai, china. J Geophys Res: Sol Earth 107:B11. https://doi.org/ 10.1029/2000JB000060
- 42. Li C, Zhang P, Yin J, Min W (2009) Late quaternary left-lateral slip rate of the haiyuan fault, northeastern margin of the tibetan plateau. Tectonics 28:5. https://doi.org/10.1029/2008TC002302
- 43. Li Y, Shan X, Qu C et al (2017) Elastic block and strain modeling of GPS data around the Haiyuan-liupanshan fault, northeastern tibetan plateau. J Asian Earth Sci 150:87-97. https://doi.org/10. 1016/j.jseaes.2017.10.010
- 44. Li S, Wang Q, Yang S et al (2018) Geodetic imaging mega-thrust coupling beneath the himalaya. Tectonophysics 747-748:225-238. https://doi.org/10.1016/j.tecto.2018.08.014
- 45. Li S, Wang Q, Chen G et al (2019) Interseismic coupling in the central nepalese himalaya: spatial correlation with the 2015 Mw 7.9 gorkha earthquake. Pure Appl Geophys 176:3893-3911. https:// doi.org/10.1007/s00024-019-02121-7
- 46. Li Y, Nocquet J, Shan X, Song X (2021) geodetic observations of shallow creep on the laohushan-haiyuan fault northeastern tibet. J Geophys Res: Sol Earth 126:e2020JB021576. https://doi.org/ 10.1029/2020JB021576
- 47. Li Y, Zhao D, Shan X et al (2022) Coseismic slip model of the 2022 Mw 6 7 luding (Tibet) earthquake: pre- and post-earthquake interactions with surrounding major faults. Geophys Res Lett 49:e2022GL102043. https://doi.org/10.1029/2022GL102043
- 48. Li Y, Shan X, Gao Z, Huang X (2023) Interseismic coupling, asperity distribution, and earthquake potential on major faults in southeastern tibet. Geophy Res Lett 50:e2022GL101209. https://doi. org/10.1029/2022GL101209
- 49. Liu L, Zhuang W, Ji L et al (2022) Fault locking of the Qilian-haiyuan fault zone before the 2022 menyuan Ms6.9 earthquake and its seismic hazards in the future. Front Earth Sci 10:929597. https:// doi.org/10.3389/feart.2022.929597
- 50. Lohman RB, Simons M (2005) Some thoughts on the use of InSAR data to constrain models of surface deformation: noise structure and data downsampling. Geochem Geophys Geosyst. https://doi. org/10.1029/2004GC000841
- 51. Loveless JP, Meade BJ (2011) Spatial correlation of interseismic coupling and coseismic rupture extent of the 2011 Mw = 9.0 Tohokuoki earthquake. Geophys Res Lett. https://doi.org/10.1029/2011G L048561
- 52. Luo H, Wang T (2022) Strain partitioning on the western haiyuan fault system revealed by the adjacent 2016 Mw5 9 and 2022 Mw6 7 menyuan earthquakes. Geophys Res Lett 49:e2022GL099348. https://doi.org/10.1029/2022GL099348
- 53. McCaffrey R (2005) Block kinematics of the Pacific-north america plate boundary in the southwestern united states from inversion of GPS, seismological, and geologic data. J Geophys Res: Sol Earth 110:B7. https://doi.org/10.1029/2004JB003307
- 54. McCaffrey R, Long MD, Goldfinger C et al (2000) Rotation and plate locking at the southern cascadia subduction zone. Geophys Res Lett 27:3117-3120. https://doi.org/10.1029/2000GL011768
- 55. McCaffrey R, Qamar AI, King RW et al (2007) Fault locking, block rotation and crustal deformation in the pacific northwest. Geophys J Int 169:1315-1340. https://doi.org/10.1111/j.1365-246X.2007. 03371.x
- 56. Meade BJ, Loveless JP (2009) Block modeling with connected faultnetwork geometries and a linear elastic coupling estimator in spherical coordinates. Bull Seismol Soc Am 99:3124-3139. https://doi.org/10.1785/0120090088
- 57. Metois M, Socquet A, Vigny C (2012) Interseismic coupling, segmentation and mechanical behavior of the central chile subduction zone. J Geophys Res: Sol Earth 117:B3. https://doi.org/10.1029/ 2011JB008736
- 58. Minson SE, Simons M, Beck JL (2013) Bayesian inversion for finite fault earthquake source models I—theory and algorithm. Geophys J Int 194:1701-1726. https://doi.org/10.1093/gji/ggt180
- 59. Molnar P, Tapponnier P (1978) Active tectonics of tibet. J Geophys Res: Sol Earth 83:5361-5375. https://doi.org/10.1029/JB083 iB11p05361
- 60. Moreno M, Rosenau M, Oncken O (2010) 2010 Maule earthquake slip correlates with pre-seismic locking of andean subduction zone. Nature 467:198-202
- 61. Ou Q, Daout S, Weiss JR et al (2022) Large-scale interseismic strain mapping of the NE tibetan plateau from Sentinel-1 interferometry. J Geophys Res: Sol Earth 127:e2022JB024176. https://doi.org/10. 1029/2022JB024176
- 62. Pan JW, Li HB, Chevalier ML et al (2022) Coseismic surface rupture and seismogenic structure of the 2022 Ms6. 9 menyuan earthquake, qinghai china, province. China Acta Geologica Sinica 96:215-231
- 63. Payne SJ, McCaffrey R, King RW, Kattenhorn SA (2012) A new interpretation of deformation rates in the snake river plain and adjacent basin and range regions based on GPS measurements: deformation rates in the snake river plain. Geophys J Int 189:101-122. https:// doi.org/10.1111/j.1365-246X.2012.05370.x
- 64. Rosen PA, Gurrola E, Sacco GF, Zebker H (2012). The InSAR scientific computing environment. In: EUSAR 2012; 9th european conference on synthetic aperture radar. 730-733
- 65. Savage JC, Burford RO (1973) Geodetic determination of relative plate motion in central california. J Geophys Res 78:832-845. https:// doi.org/10.1029/JB078i005p00832
- 66. Tapponnier P, Zhiqin X, Roger F et al (2001) Oblique stepwise rise and growth of the tibet plateau. Science 294:1671-1677. https://doi. org/10.1126/science.105978
- 67. Wallace LM, Beavan J, McCaffrey R et al (2007) Balancing the plate motion budget in the south island, new zealand using GPS, geological and seismological data. Geophys J Int 168:332-352. https://doi.org/10.1111/j.1365-246X.2006.03183.x
- 68. Wan Y, Huang S, Wang F et al (2023) Fault geometry and slip characteristics revealed by the 2022 menyuan earthquake sequence. Chin J Geophys 66:2796-2810. https://doi.org/10.6038/cjg2022Q0345
- 69. Wang M, Shen Z (2020) Present-day crustal deformation of continental china derived from GPS and Its tectonic implications. J Geophys Res: Sol Earth 125:e2019JB018774. https://doi.org/10.1029/ 2019JB018774
- 70. Wang H, Liu-Zeng J, Ng AH-M et al (2017) Sentinel-1 observations of the 2016 menyuan earthquake: a buried reverse event linked to the left-lateral haiyuan fault. Int J Appl Earth Obs Geoinf 61:14-21. https://doi.org/10.1016/j.jag.2017.04.011
- 71. Weiss JR, Walters RJ, Morishita Y et al (2020) High-resolution surface velocities and strain for anatolia from Sentinel-1 InSAR and GNSS data. Geophys Res Lett 47:e2020GL087376. https://doi. org/10.1029/2020GL087376
- 72. Wessel P, Smith WHF, Scharroo R et al (2013) Generic mapping tools: improved version released. EOS Trans Am Geophys Union 94:409-410. https://doi.org/10.1002/2013EO450001
- 73. Xiong W, Chen W, Zhao B et al (2019) Insight into the 2016 menyuan Mw 5.9 earthquake with InSAR: a blind reverse event promoted by historical earthquakes. Pure Appl Geophys 176:577-591. https://doi.org/10.1007/s00024-018-2000-0
- 74. Xu X, Yeats RS, Yu G (2010) Five short historical earthquake surface ruptures near the silk road, gansu province, china. Bull Seismol Soc Am 100:541-561. https://doi.org/10.1785/0120080282
- 75. Yu C, Li Z, Penna NT (2018) Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model. Remote Sens Environ 204:109-121. https:// doi.org/10.1016/j.rse.2017.10.038
- 76. Yuan D, Zhang P, Liu B et al (2004) Geometrical imagery and tectonic transformation of Late quaternary active tectonics in northeastern margin of Qinghai-Xizang Plateau. Acta Geologica Sin Chin Edit 78:278-287
- 77. Yuan D, Ge W, Chen Z et al (2013) The growth of northeastern tibet and its relevance to large-scale continental geodynamics: a review of recent studies. Tectonics 32:1358-1370. https://doi.org/10. 1002/tect.20081
- 78. Zhang P, Molnar P, Burchfiel BC et al (1988) Bounds on the holocene slip rate of the haiyuan fault, North-central China. Quatern Res 30:151-164. https://doi.org/10.1016/0033-5894(88)90020-8
- 79. Zheng W, Zhang P, He W et al (2013) Transformation of displacement between strike-slip and crustal shortening in the northern margin of the tibetan plateau: evidence from decadal GPS measurements and late quaternary slip rates on faults. Tectonophysics 584:267- 280. https://doi.org/10.1016/j.tecto.2012.01.006
- 80. Zheng R, Wang Q, Zou R, Wang J (2023) InSAR coseismic deformation monitoring and source characteristics of the 2022 Qinghai Menyuan Mw 6.6 earthquake. Chin J Geophys 66(8):3218-3229. https://doi.org/10.6038/cjg2022Q0156
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b4f9d70-8732-47cd-8ee2-7c96be237ac8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.