Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper analyses online verification methods for safety- and security-critical systems, including aerospace, nuclear instrumentation, and smart home systems. It emphasizes the need for resilience and adaptability in these systems to withstand various environmental conditions and potential threats. Several Markov models are developed to evaluate the dependability of control systems for small modular reactors. These models illustrate how online verification, by enabling early detection of failures, can enhance resilience and improve system performance. The findings suggest that optimising verification parameters is crucial for this enhancement, providing a foundation for future research in critical control systems.
Rocznik
Tom
Strony
10
Opis fizyczny
Bibliogr. 18 poz., tab., rys.
Twórcy
autor
- National Aerospace University “Kharkiv Aviation Institute”
autor
- Poltava State Agrarian University
autor
- National Aerospace University “Kharkiv Aviation Institute”
- Institute of Informatics and Telematics of the National Research Council (IIT-CNR)
autor
- National Aerospace University “Kharkiv Aviation Institute”
autor
- Poltava State Agrarian University
Bibliografia
- [1] R. K. Kaur, L. K. Singh, and B. Pandey, “Security analysis of safety-critical and control systems: A case study of a nuclear power plant system,” Nuclear Technology, vol. 197, no. 3, pp. 296-307, Feb. 2017. https://doi.org/10.1080/00295450.2016.1273702
- [2] R. Peldszus, “Resilience of Space Systems: Principles and practice,” Handbook of Space Security, pp. 127-143, 2020. https://doi.org/10.1007/978-3-030-23210-8_87
- [3] J. Hartmann, J. Hyvärinen, and V. Rintala, “The operator and the seven small modular reactors — an estimate of the number of reactors that a single reactor operator can safely operate,” Nuclear Engineering and Design, vol. 418, p. 112929, Mar. 2024. https://doi.org/10.1016/j.nucengdes.2024.112929
- [4] G. Vardakis, G. Hatzivasilis, E. Koutsaki, and N. Papadakis, “Review of smart-home security using the internet of things,” Electronics, vol. 13, no. 16, p. 3343, Aug. 2024. https://doi.org/10.3390/electronics13163343
- [5] R. Ross, V. Pillitteri, R. Graubart, D. Bodeau, and R. McQuaid, NIST Special Report 800-160, Vol. 2. Developing cyber-resilient systems, Dec. 2021. https://doi.org/10.6028/nist.sp.800-160v2r1
- [6] NIST Interagency Report 8074 Volume 2. Interagency Report on Strategic U.S. Government Engagement in International Standardization to Achieve U.S. Objectives for Cybersecurity. (2015). https://doi.org/10.6028/nist.sp.800-30r1
- [7] M. Hogan and E. Newton, Supplemental information for the interagency report on strategic U.S. government engagement in International Standardization to achieve U.S. objectives for cybersecurity, Dec. 2015. https://doi.org/10.6028/nist.ir.8074v2
- [8] American National Standards Institute (ANSI) DS 3001:2009. Organizational Resilience: Security, Preparedness, And Continuity Management Systems - Requirements With Guidance For Use. 2009. https://webstore.ansi.org/standards/ds/ds30012009
- [9] Computer Security Resource Center. Glossary. Resilience. https://csrc.nist.gov/glossary/term/resilience/
- [10] J. C. Santos, S. Suloglu, N. Cataño, and M. Mirakhorli, “A methodological approach to verify architecture resiliency,” Lecture Notes in Computer Science, pp. 321-336, 2023. https://doi.org/10.1007/978-3-031-36889-9_22
- [11] J. Zhang, G. Li, and X. Liu, “Compare of formal analysis and testing for verification of safety-critical systems: A case study,” Proceedings of the 2nd International Conference On Systems Engineering and Modeling, 2013. https://doi.org/10.2991/icsem.2013.179
- [12] V. Kharchenko, Y. Ponochovnyi, S. Dotsenko, O. Illiashenko, and O. Ivasiuk, “Models of Resilient Systems with online verification considering changing requirements and latent failures,” Lecture Notes in Networks and Systems, pp. 90-99, 2024. https://doi.org/10.1007/978-3-031-61857-4_9
- [13] L. Wang, “A Markov model-based fusion algorithm for Distorted Electronic Technology Archives,” Computational Intelligence and Neuroscience, vol. 2022, pp. 1-11, Apr. 2022. https://doi.org/10.1155/2022/4202181
- [14] V. Kharchenko, Y. Ponochovnyi, A. Boyarchuk, and E. Brezhnev, “Resilience assurance for software-based space systems with online patching: Two cases,” Advances in Intelligent Systems and Computing, pp. 267-278, 2016. https://doi.org/10.1007/978-3-319-39639-2_23
- [15] L. Ozirkovskyy, B. Volochiy, O. Shkiliuk, M. Zmysnyi, and P. Kazan, “Functional Safety Analysis of safety-critical system using state transition diagram,” Radioelectronic and Computer Systems, no. 2, pp. 145-158, May 2022. https://doi.org/10.32620/reks.2022.2.12
- [16] Instrumentation and Control Systems. Chapter 7. Hermes Non-Power Reactor Preliminary Safety Analysis Report, revision 0, September 2021, Kairos Power LLC
- [17] Safety evaluation. Docket 50-7513. Related to the Kairos Power LLC Construction Permit Application for the Hermes Test Reactor. 2023. https://www.nrc.gov/docs/ML2310/ML23108A119.pdf
- [18] Y. Ponochovnyi, V. Kharchenko, “Dependability assurance methodology of information and control systems using multipurpose service strategies,” Radioelectronic and Computer Systems, no. 3, pp. 43-58, September 2020. https://doi.org/10.32620/reks.2020.3.05
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b4d4ff6-ed40-4500-952a-d8ecb3111251
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.