PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction optimization of mechanical properties of ferrite stainless steels after rolling treatment with use of genetic algorithms

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The article discusses the use of artificial neural networks for research and prediction of the impact of chemical elements and heat treatment parameters on the mechanical properties of stainless steels optimized by genetic algorithm. Design/methodology/approach: To improve the quality of artificial neural network models and improve their performance the number of input variables of artificial neural networks has been optimized with use of genetic algorithms. Then a computational model build with optimised artificial neural networks were trained and verified. Findings: Optimization, except of tensile strength Rm case, has allowed the development of artificial neural networks, which either showed a better or comparable result from base networks, and also have a reduced number of input variables. As a result, in computational model constructed with use of these networks the noise information is reduced. Research limitations/implications: Data analysis was needed to verify if obtained data used for modelling are relevant to use them in artificial neural networks training processes. Practical implications: The use of artificial intelligence allows the multifaceted development of stainless steels engineering, even if only a small number of descriptors is available. Constructed and optimised computational model build with use of optimised artificial neural networks allows prediction of mechanical properties of rolled ferritic stainless steels after normalization. Originality/value: Introduced model can be obtain in industry to reduce manufacturing costs of materials. It can also simplify material selection, when engineer must properly choose the chemical elements and adequate plastic and/or heat treatment of stainless steels with required mechanical properties.
Rocznik
Strony
17--24
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] L.A. Dobrzański, Fundamentals of materials science and metallurgy, WNT, Warsaw, 2002
  • [2] L.A. Dobrzański, Metal engineering materials, WNT, Warsaw, 2004 (in Polish).
  • [3] Z. Wesołowski, Fundamentals of rolling, Katowice, WGH, 1960.
  • [4] L.A. Dobrzański, R. Honysz, Artificial intelligence and virtual environment application for materials design methodology, Journal of Machine Engineering 11/1-2 (2011) 102-119.
  • [5] L.A. Dobrzański, R. Honysz, Computer modelling system of the chemical composition and treatment parameters influence on mechanical properties of structural steels, Journal of Achievements in Materials and Manufacturing Engineering 35/2 (2009) 138-145.
  • [6] A. Marciniak, J. Korbicz, Data preparation and planning of the experiment. W: Artificial neural networks in biomedical engineering. Tome 9 (ed. R. Tadeusiewicz, J. Korbicz, L. Rutkowski, W. Duch), EXIT Academic Publishing House, Warsaw, 2013.
  • [7] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolutionary programs, WNT, Warsaw, 2003.
  • [8] L.A. Dobrzański, Engineering materials and materials design. Fundamentals of materials science and physical metallurgy, WNT, Warsaw-Gliwice, 2006 (in Polish).
  • [9] E. Krzemień, Material science, Silesian University of Technology Publishing, Gliwice, 2007 (in Polish).
  • [10] L.A. Dobrzański, R. Honysz, S. Fassois, On the identification of composite beam dynamics based upon experimental data, Journal of Achievements in Materials and Manufacturing Engineering 16 (2006) 429-432.
  • [11] M. Hetmańczyk, Fundamentals of material science, Silesian university of Technology Publishing, Gliwice, 2007, (in Polish)
  • [12] G.E. Totten, Steel heat treatment: metallurgy and technologies, CRC Press, New York, 2006.
  • [13] J. Adamczyk. Metallurgy theoretical part. 1. The structure of metals and alloys. Silesian University of Technology, Gliwice, 1999.
  • [14] J. Adamczyk. Metallurgy theoretical part. 2. plastic deformation, strengthening and cracking. Silesian University of Technology, Gliwice, 2002.
  • [15] PN-EN 10088-1:2014-12, ”Stainless steels - Part 2: Technical delivery conditions for sheet metal/thick and stainless steel strip of general purpose”, 2014.
  • [16] L.A. Dobrzański, R. Honysz, Development of the virtual light microscope for a material science virtual laboratory, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 571-574.
  • [17] L.A. Dobrzaski, R. Honysz, Materials science virtual laboratory - innovatory didactic tool in the teaching of material engineering performed by traditional and elearning methods, Acta Mechanica et Automatica 2/4 (2008) 5-10.
  • [18] W. Myszka, Virtual Laboratory of mechanics, is it worth it?, Proceednigs of the 19th Symposium on Experimental Mechanics of Solids, Jachranka, 2000, 404-409.
  • [19] T. Olszewski, P. Boniecki, J. Weres, Genetic algorithms as a optimization tool applied in neural networks, Agricultural Engineering 2 (2005) 137-143.
  • [20] L. Rutkowski, Methods and techniques of artificial intelligence, PWN, Warszawa, 2006.
  • [21] R. Tadeusiewicz, Artificial neural networks, Academic Publishing House, Warsaw, 2001.
  • [22] T. Trzepieciński, Genetic algorithms as an optimization tool of neural networks modelling friction phenomenon, Mechanics 83/4 (2011) 63-72.
  • [23] http://www.statsoft.pl/
  • [24] http://microsoft.pl/
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b4d4c37-987b-4893-941c-2158cc77115f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.