PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Various metallography techniques for microstructure analysis of Ni-based superalloys

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Ni-based superalloys are known for the number of phases presented in alloy microstructure. Depending on alloying elements, phases such as austenitic FCC gamma matrix, L12 gamma prime, DO22 gamma double prime, BCT delta phase, and MC or M23C6 (or M6C) carbides have occurred. With these microstructure components' variety, the usual optical microscopy analysis is not satisfactory many times. For a better understanding of how single structures affect the lifetime of Nibased superalloys components (turbine blades or turbine discs) and how they are changing during their operation load is SEM a very powerful tool. Two different types of superalloys were used for experimental evaluation. The first were cast superalloys ZhS6K and IN 738. Both cast superalloys in bar form were subjected to additional heat treatment at 800°C for 10 and 15 hours followed by air-cooling. The influence of gamma prime phase morphology changes on alloy lifetime and Vickers hardness were evaluated by SEM coherent testing grid methods. The second was wrought superalloy IN 718 and Nimonic 80A in bar form to present the various grain size evaluation techniques according to ASTM E112 standards. Various analyses were employed (SEM fractography, BSE observation, EDS mapping, etc.) for microstructure evaluation. The main goal is to show how effective light microscopy and SEM on Ni-based superalloy analysis are when microstructure change evaluation is needed.
Wydawca
Rocznik
Strony
473--484
Opis fizyczny
Bibliogr. 17 poz. rys., tab.
Twórcy
autor
  • University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering, Univerzitná 8215/1, 01026 Žilina, Slovakia
  • University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering, Univerzitná 8215/1, 01026 Žilina, Slovakia
  • University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering, Univerzitná 8215/1, 01026 Žilina, Slovakia
  • University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering, Univerzitná 8215/1, 01026 Žilina, Slovakia
Bibliografia
  • 1.Belan, J., 2012. Study of advanced materials for aircraft jet engines using quantitative metallography, Recent Advances in Aircraft Technologies, R., K., Agarwal, Ed., IN-TECH Europe, Rijeka, Croatia, 49-74. DOI: 10.5772/37254
  • 2.Belan, J., Kuchariková, L., Vaško, A., Tillová, E., 2017. The influence of high temperature on DV-2 jet engine Ni-based superalloy turbine blade degradation, Materials TodayProceedings, 4(5), 5743-5748. DOI: 10.1016/j.matpr.2017.06.039
  • 3.Dehmas, M., Lacaze, J., Niang, A., Viguier, B., 2011. TEM Study of High-Temperature Precipitation of Delta Phase in Inconel 718 Alloy, Advances in Materials Science and Engineering, 2011, 1-9. DOI: 10.1155/2011/940634
  • 4.Donachie, M., J., Donachie, S., J., 2002. Superalloys: A Technical Guide, Materials Park, OH: ASM International Publication, USA.
  • 5.Durand-Charre, M., 1997. The Microstructure of Superalloys, Amsterdam: Gordon and Breach Science, NL.
  • 6.Furrer, D., Fecht, H., 1999. Ni-Based Superalloys for Turbine Discs, JOM, 51(1), 14-17.
  • 7.Gaddes, B., Leon, H., Huang, X., 2010. Superalloys - Alloying and Performance, Materials Park, OH: ASM International Publication, USA.
  • 8.Ko, H., S., Paik, K., W., Park, L., J., Kim, Y., G., Tundermann, J., H., 1998. Influence of Rhenium on the Microstructures and Mechanical Properties of a Mechanically Alloyed Oxide Dispersion-Strengthened Nickel-Base Superalloy, J. Mater. Sci., 33, 3361-3370.
  • 9.Koehler, J., S., Seitz, F., Read Jr., W., T., Shockley, W., Orowan, E., 1954. Dislocations in Metals, M. Cohen, Ed., AIMME, New York, USA.
  • 10.Kumar, P., 1994. The Role of Niobium and Tantalum in Superalloys, Advances in High Temperature Structural Materials and Protective Coatings, A.K. Koul, Ed., National Research Council of Canada, Ottawa, 34-53.
  • 11.Manriquez, J., A.; Bretz, P., L.; Rabenberg, L.; Tien, J., K., 1992. The High Temperature Stability of IN718 Derivative Alloys, Superalloys 1992, S. D. Antolovich et al., Ed., TMS, 507-516. DOI: 10.7449/1992/Superalloys_1992_507_516
  • 12.Pollock, T., M.; Tin, S., 2006. Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure, and Properties, Journal of Propulsion and Power, 22(2), 361- 374. DOI: 10.2514/1.18239
  • 13.Reed, R., C., 2006. The Superalloys: Fundamentals and Applications, New York, NY: Cambridge University Press, USA.
  • 14.Sims, Ch. T., Stoloff, N., S., Hagel, W., C., 1987. Superalloys II - High-temperature materials for aerospace and industrial power - 2 nd Edition, John Wiley & Sons, New York, NY, USA.
  • 15.Sundararaman, M.; Mukhopadhyay, P.; Banerjee, S., 1992. Some aspects of the precipitation of metastable intermetallic phases in INCONEL 718, Metallurgical transactions. A, 23(7), 2015-2028. DOI: 10.1007/BF02647549
  • 16.Sunulahpašić, R., Oruč, M., Hadžalić, M., Rimac, M., 2012. Optimization of the mechanical properties of the superalloy Nimonic 80A. Materials and Technologies, 46(3), 263-267.
  • 17.Vaško, A., 2016. Evaluation of shape of graphite particles in cast irons by a shape factor, Materials Today-Proceedings, 3(4), 1199-1204. DOI: 10.1016/j.matpr.2016.03.006
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b47dc0a-924d-47b6-8c47-7b6663ebba00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.