PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of Using an Inerter on the Performance of Vehicle Active Suspension

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates the effect of employing an inerter on the performance of active suspension systems. A quarter-car model with cubic-nonlinear spring is considered. The inerter is installed in parallel with the primary suspension spring and damper. First, feedback linearization (FBL) is used to linearize the mathematical model. Then the linear quadratic regulator (LQR) is adopted to control the suspension system. The proposed design is ride comfort-oriented and considers structural constraints. Numerical simulations are executed for passive systems with different values of inertance. Results show that employing an inerter to the passive suspension can improve the ride comfort performance by more than 32%. Employing an inerter to active suspension systems can also improve the ride comfort and reduce actuator force significantly. The actuator force can be reduced by 25%. However, the results also show that the uncaring selection of the inerter can dramatically degrade the performance of the suspension system.
Twórcy
  • Department of Mechanical Engineering, Tafi la Technical University, Tafi la 66110, Jordan
  • Department of Mechanical Engineering, Tafi la Technical University, Tafi la 66110, Jordan
Bibliografia
  • 1. Smith M.C. Synthesis of mechanical networks: the inerter. In Proc. of 41st IEEE Conference on Decision and Control, Las Vegas, Nevada USA, 2002.
  • 2. Chen M.Z.Q. Passive network synthesis of restricted complexity. Ph.D. dissertation, Cambridge University, 2007.
  • 3. Ma R., Bi K., Hao H. Inerter-based structural vibration control: a state-of-the-art review. Engineering Structure 2021; 243: 112655.
  • 4. Wagg, D.J. A review of the mechanical inerter: historical context, physical realisations and nonlinear applications. Nonlinear Dynamics 2021; 104: 13-34.
  • 5. Chen M.Z.Q., Hu Y. Inerter and its application in vibration control. 1st ed., Springer and Science Press Beijing, China, 2019.
  • 6. Smith M.C., Wang F.C. Performance benefits in passive vehicle suspensions employing inerters. Vehicle System Dynamics 2004; 42(4): 235-257.
  • 7. Scheibe F., Smith M.C. Analytical solutions for optimal ride comfort and tyre grip for passive vehicle suspensions. Vehicle System Dynamics 2009; 47(10): 1229-1252.
  • 8. Hu Y., Chen M.Z.Q., Zhu Z. Passive vehicle suspensions employing inerters with multiple performance requirements. Journal of Sound and Vibration 2014; 333: 2212-2225.
  • 9. Shen Y., Chen L., Liu Y., Zhang X. Analysis of vibration transfer characteristics on vehicle suspension system employing inerter. Journal of Theoretical and Applied Mechanics 2017; 55(3): 1245-1256.
  • 10. Wang F.-C., Su W.-J. Impact of inerter nonlinearities on vehicle suspension control. Vehicle System Dynamics 2008; 46(7): 575-595.
  • 11. Shen Y., Chen L., Liu Y., Zhang, X. Modeling and optimization of vehicle suspension employing a nonlinear fluid inerter. Shock and Vibration 2016; article ID 2623017.
  • 12. Shen Y., Chen L., Liu, Y., Zhang, X. Influence of fluid inerter nonlinearities on vehicle suspension performance. Advances in Mechanical Engineering 2017; 9(11): 1-10.
  • 13. Chen M.Z.Q., Hu Y., Li, C., Chen, G. Semi-active suspension with semi-active inerter and semi-active damper. In: Proc. of 19th Word Congress - International Federation of Automatic Control, Cape Town, South Africa, 2014.
  • 14. Chen M.Z.Q., Hu Y., Li C., Chen, G. Application of semi-active inerter in semi-active suspensions via force tracking. Journal of Vibration and Acoustics 2016; 138(4): 041014.
  • 15. Li P., Lam J., Cheung K.C. Control of vehicle suspension using an adaptive inerter. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 2015; 229(14): 1934–1943.
  • 16. Hu Y., Chen M.Z.Q. Comfort-oriented vehicle suspension design with skyhook inerter configuration. Journal of Sound and Vibration 2018; 405: 34-47.
  • 17. Soong M.F., Ramli R., Mahadi W.N.L., Saifizul A. Ride improvement of vehicle suspensions with switchable inerter based on force cancellation strategy. Journal of Vibroengineering 2017; 19(2): 1260-1272.
  • 18. Zhang X.-L., Zhang T., Nie J., Chen L. A semiactive skyhook-inertance control strategy based on continuously adjustable inerter. Shock and Vibration 2018; Article ID 6828621.
  • 19. Wang Y., Ding H., Chen L.-Q. Averaging analysis on a semi-active inerter-based suspension system with relative-acceleration-relative velocity control. Journal of Vibration and Control 2019; 26(13-14): 1199-1215.
  • 20. Li Y., Han S., Gao G., Xiong J., Zhang Q., Shi J. Vehicle suspension design with semi-active inerter and semi-active damper configuration. In: Proc. of 10th international Symposium on Precision Mechanical Measurements, Vol. 12059, 1205915, 2021.
  • 21. Wang F.-C., Chan H.-A. Vehicle suspensions with a mechatronic network strut. Vehicle System Dynamics 2011; 49(5): 811-830.
  • 22. Shen Y., Liu Y., Chen L., Yang X. Optimal design and experimental research of vehicle suspension based on a hydraulic electric inerter. Mechatronics 2019; 61: 12-19.
  • 23. Liu Y., Zhao W., Yang X., Chen L., Shen Y. Predictive control of vehicle ISD suspension based on a hydraulic electric inerter. Shock and Vibration 2019; Article ID 9230736.
  • 24. Fialho I., Balas G.J. Road adaptive active suspension design using linear parameter-varying gain-scheduling. IEEE Transactions on Control Systems Technology 2002; 10(1): 43–54.
  • 25. Poussot-Vassal C., Drivet A., Sename O., Dugard L., Ramirez-Mendoza R. A self-tuning LPV/H∞suspension controller for a multi-body quarter vehicle model. In: Proc. of 20th Symposium of the International Association for Vehicle System Dynamics, IAVSD, p.6, 2007.
  • 26. Onat C., Kucukdemiral I.B., Sivrioglu S., Yuksek I. LPV model-based gain-scheduling controller for a full vehicle active suspension system. Journal of Vibration and Control 2007; 13(11): 1629–1666.
  • 27. Onat C., Kucukdemiral I., Sivrioglu S., Yuksek I., Cansever G. LPV gain-scheduling controller design for a nonlinear quarter-vehicle active suspension system’, Transactions of the Institute of Measurement and Control 2009; 31(1): 71–95.
  • 28. Abdalla M., Al Shabatat N., Al Qaisi, M. Linear matrix inequality-based control of vehicle active suspension system. Vehicle System Dynamics 2009; 47(1): 121–134.
  • 29. Lin J-S., Huang C-J. Nonlinear backstepping active suspension design applied to a half-car model. Vehicle System Dynamics 2004; 42(6): 373–393.
  • 30. Yagiz N., Hacioglu Y. Backstepping control of a vehicle with active suspensions’, Control Engineering Practice 2008; 16(12): 1457–1467.
  • 31. Yoshimura T., Kume A., Kurimoto M., Hino J. Construction of an active suspension system of a quarter car model using the concept of sliding mode control. Journal of Sound and Vibration, 2001, 239(2): 187–199.
  • 32. Guclu R., Yagiz N. Comparison of different control strategies on a vehicle using sliding mode control. Iranian Journal of Science and Technology, 2004, 28(4): 413–422.
  • 33. Yagiz, N. and Sakman, L. Robust sliding mode control of a full vehicle without suspension gap loss. Journal of Vibration and Control, 2005, 11(11): 1357–1374.
  • 34. Zheng, L. and Baz, A. Control of vehicle suspension using a nonlinear energy sink controller. International Journal of Vehicle Noise and Vibration, 2007, 3(1): 27–45.
  • 35. Shi, J-W., Li, X-W. and Zhang, J-W. PID control for active hydropneumatic suspension based on the feedback linearization. International Journal of Vehicle Noise and Vibration, 2009, 5(1–2) 158–174.
  • 36. Shaqarin, T. and Alshabatat, N. A nonlinear quarter-car active suspension design based on feedback linearisation and H∞ control. International Journal of Vehicle Noise and Vibration, 2018, 14(1): 1–15.
  • 37. Shaqarin, T. Robustness analysis of feedback linearisation and LQR control on quarter-car model with cubic nonlinearity. International Journal of Vehicle Noise and Vibration, 2018, 14(3): 238-250.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b464997-4d63-4c11-8d63-05cce3ea759c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.