Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Dynamika rozkładu ibuprofenu przez szczep Bacillus thuringiensis B1(2015b)
Języki publikacji
Abstrakty
High intake of over-the-counter, non-steroidal anti-inflammatory drugs, such as ibuprofen, has resulted in their presence in wastewaters and surface waters. The potentially harmful effect of ibuprofen present in the waters has led to a search for new methods of drugs’ removal from the environment. One of the most important technological and economical solutions comprises microbiological degradation of these resistant pollutants. Searching for new strains able to degrade ibuprofen could be one of the answers for increasing the detection of pharmaceuticals in the waters. In this study, the ability of bacterial strain Bacillus thuringiensis B1(2015b) to remove ibuprofen is described. Bacteria were cultured in both monosubstrate and cometabolic systems with 1, 3, 5, 7 and 9 mg L-1 ibuprofen and 1 g L-1 glucose as a carbon source. Bacillus thuringiensis B1(2015b) removed ibuprofen up to 9 mg L-1 in 232 hours in the monosubstrate culture, whereas in the cometabolic culture the removal of the drug was over 6 times faster. That is why the examined strain could be used to enhance the bioremediation of ibuprofen.
Wysokie spożycie niesteroidowych leków przeciwzapalnych, takich jak ibuprofen, skutkuje ich obecnością w ściekach i wodach powierzchniowych. Potencjalnie szkodliwy wpływ obecności ibuprofenu w wodach wymusza konieczność poszukiwania nowych metod usuwania leków ze środowiska. Jedną z najbardziej obiecujących, między innymi ze względu na niskie koszty, jest metoda mikrobiologicznego oczyszczania. Z tego względu poszukuje się mikroorganizmów o zwiększonych zdolnościach degradacyjnych ibuprofenu. Celem pracy było określenie zdolności szczepu Bacillus thuringiensis B1(2015b)do degradacji ibuprofenu. Hodowle bakterii prowadzono w układach mono- i disubstratowych z 1, 3, 5, 7 i 9 mg L-1 ibuprofenu oraz 1 g L-1 glukozy jako źródłem węgla w układach kometabolicznych. Wykazano, że szczep Bacillus thuringiensis B1(2015b) usuwa 9 mg L-1 ibuprofenu w 232 godziny w układzie monosubstratowym, podczas gdy w hodowli kometabolicznej całkowite usunięcie ibuprofenu zachodziło 6-krotnie szybciej. Otrzymane wyniki wskazują na możliwość zastosowania badanego szczepu w bioremediacji środowisk zanieczyszczonych ibuprofenem.
Czasopismo
Rocznik
Tom
Strony
60--64
Opis fizyczny
Bibliogr. 22 poz., tab., wykr.
Twórcy
autor
- Univeristy of Silesia in Katowice, Poland
autor
- Univeristy of Silesia in Katowice, Poland
autor
- Univeristy of Silesia in Katowice, Poland
Bibliografia
- [1]. Almeida, B., Kjeldal, H., I. Lolas, Knudsen, A.D., Carvalho, G., Nielsen, K.L., Barreto Crespo, M.T., Stensballe, A. & Nielsen, J.L. (2013). Quantitative proteomic analysis of ibuprofen- degrading Patulibacter sp. strain I11, Biodegradation, 24, 5, pp. 615-630.
- [2]. Buser, H.R., Poiger, T. & Muller, M.D. (1999). Occurrence and environmental behavior of the chiral pharmaceutical drug ibuprofen in surface waters and in wastewater, Environmental Science and Technology, 33, 15, pp. 2529-2535.
- [3]. Chen, Yi. & Rosazza, J.P.N. (1994). Microbial transformation of ibuprofen by a Nocardia species, Applied and Environmental Microbiology, 60, 4, pp. 1292-1296.
- [4]. Collado, N., Buttiglieri, G., Ferrando-Climent, L., Rodriguez-Mozaz, S., Barceló, D., Comas, J. & Rodriguez-Roda, I. (2012). Rmoval of ibuprofen and its transformation products: experimental and simulation studies, Science of the Total Environment, 433, pp. 296-301.
- [5]. Debska, J., Kot-Wasik, A. & Namiesnik, J. (2005). Determination of nonsteroidal antiinflammatory drugs in water samples using liquid chromatography coupled with diode-array detector and mass spectrometry, Journal of Separation Science, 28, 17, pp. 2419-2426.
- [6]. Ferrando-Climent, L., Collado, N., Buttiglieri, G., Gros, M., Rodriguez-Roda, I., Rodriguez-Mozaz, S. & Barceló, D. (2012). Comprehensive study of ibuprofen and its metabolites in activated sludge batch experiments and aquatic environment, Science of Total Environment, 438, pp. 404-413.
- [7]. Głodniok, M. (2016). Occurrence of ibuprofen in wastewater treatment plant in Katowice agglomeration, Przemysł Chemiczny, 95, pp. 1000-1003 (in Polish).
- [8]. Greń, I., Wojcieszyńska, D., Guzik, U., Perkosz, M. & Hupert-Kocurek, K. (2010). Enhanced biotransformation of mononitrophenols by Stenotrophomonas maltophilia KB2 in the presence of aromatic compounds of plant origin, World Journal of Microbiology and Biotechnology, 26, pp. 289-295
- [9]. Jelic, A., Gros, M., Ginebreda, A., Cespedes-Sanchez, R., Ventura, F., Petrovic, M. & Barcelo, D. (2011). Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment, Water Research, 45, pp. 1165-1176.
- [10]. Kojima, Y., Itada, N. & Hayaishi, O. (1961). Metapyrocatechase: a new catechol-cleaving enzyme, The Journal of Biological Chemistry, 236, 8, pp. 2223-2228.
- [11]. Marco-Urrea, E., Pérez-Trujillo, M., Vicent, T. & Caminal, Gl. (2009). Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor. 2008, Chemosphere, 74, 6, pp. 765-772.
- [12]. Murdoch, R.W. & Hay, A.G. (2005). Formation of catechols via removal of acid side chains from ibuprofen and related aromatic acids, Applied and Environmental Microbiology, 71, 10, pp. 6121-6125.
- [13]. Öllers, S., Singer, H.P., Fässler, P. & Müller, S.R. (2001). Simultaneous quantification of neutral and acidic pharmaceuticals and pesticides at the low-ng/l level in surface and waste water, Journal of Chromatography A, 911, 2, pp. 225-234.
- [14]. Quintana, J., Weiss, S. & Reemtsma, T. (2005). Pathways andmetabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor, Water Research, 39, 12, pp. 2654-2664.
- [15]. Roberts, P. & Thomas, K. (2006). The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower tyne catchment, Science of the Total Environment, 356, 1-3, pp. 143-153.
- [16]. Rodarte-Morales, A.I., Feijoo, G., Moreira, M.T. & Lema, J.M. (2012). Biotransformation of three pharmaceutical active compounds by the fungus Phanerochaete chrysosporium in a fed batch stirred reactor under air and oxygen supply, Biodegradation, 23, 1, pp. 145-156.
- [17]. Roe, J.R. (1955). The determination of sugar in blood and spinal fluid with anthrone reagent, The Journal of Biological Chemistry, 212, pp. 335-343.
- [18]. Santos, L.H.M.L.M., Araujo, A.N., Fachini, A., Pena, A., Delerue- Matos, C. & Montenegro, M.C.B.S.M. (2010). Ecotoxicological aspects realted to the presence of pharmaceuticals in the aquatic environment, Journal of Hazardous Materials, 175, pp. 45-95.
- [19]. Ternes, T.A. (1998). Occurrence of drugs in german sewage treatment plants and rivers, Water Research, 32, 11, pp. 3245-3260.
- [20]. Vieno, N.M., Tuhkanen, T. & Kronberg, L. (2005). Seasonal variation in the occurrence of pharmaceuticals in effluents from a sewage treatment plant and in the recipient water, Environmental Science and Technology, 39, 21, pp. 8220-8226.
- [21]. Winkler, M., Lawrence, J.R. & Neu, T.R. (2001). Selective degradation of ibuprofen and clofi bric acid in two model river biofilm systems, Water Research, 35, 13, pp. 3197-3205.
- [22]. Zając, A., Zembrzuska, J., Ginter-Kramarczyk, D. & Kruszelnicka, I. (2014). Biodegradation of nonsteroidal anti-inflammatory drugs in wastewater treatment processes in large urban areas, Przemysł Chemiczny, 93, pp. 2265-2269. (in Polish)
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b44f4ca-cb09-40ba-8cdd-8d904f610b39