PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of various factors on the measurement error of structural components of machine parts materials microhardness using computer vision methods

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wpływ różnych czynników na błąd pomiaru mikrotwardości materiałów elementów konstrukcyjnych części maszyn z wykorzystaniem metod wizji komputerowej
Języki publikacji
EN
Abstrakty
EN
To assess the causes of failure of parts in operation, it is often necessary to assess the degradation of the structural and phase composition of the material and determine the cause of its change. Microhardness test is used to evaluate the mechanical properties of microvolumes of the material. Microhardness of structural components of steels and cast irons (armco iron ferrite, austenitic component of steel 12Х18Н10Т and cementite of centrifugally cast chrome-nickel cast iron (cast coating Ø910 mm)) was determined by restored four-sided pyramid impression with a square base and a top angle of 136±1. The paper evaluates the influence of the main factors on the micro-hardness error of ferritic, austenitic and carbide component of steels and cast irons: the amount and speed of the indenter load, the stiffness of the substrate, the field of distribution of plastic deformations around the impression, the quality of the surface preparation, the influence of grain boundaries and the relaxation of the impression shape over time. The main factors affecting the accuracy of measurements by the reconstructed impression method have been determined for each of the investigated phases: ferrite, austenite, and cementite.
PL
Aby ocenić przyczyny awarii części w eksploatacji, często konieczna jest ocena degradacji składu strukturalnego i fazowego materiału oraz określenie przyczyny jego zmiany. Do oceny właściwości mechanicznych mikroobjętości materiału stosuje się test mi-rotwardości. Mikrotwardość składników strukturalnych stali i żeliwa (ferryt żelaza armco, austenityczny składnik stali 12Х18Н10Т i cementyt odśrodkowo odlewanego żeliwa chromowo-niklowego (powłoka odlewu Ø910 mm)) określono przez przywrócony wycisk piramidy czterobocznej o podstawie kwadratowej i kącie wierzchołkowym 136±1. W pracy oceniono wpływ głównych czynników na błąd mikrotwardości ferrytycznego, austenitycznego i węglikowego składnika stali i żeliwa: wielkości i prędkości obciążenia wgłębnika, sztywności podłoża, pola rozkładu odkształceń plastycznych wokół wycisku, jakości przygotowania powierzchni, wpływu granic ziaren oraz relaksacji kształtu wycisku w czasie. Określono główne czynniki wpływające na dokładność pomiarów metodą zrekonstruowanego wycisku dla każdej z badanych faz: ferrytu, austenitu i cementytu.
Rocznik
Strony
323--329
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Department of tractors and cars, State Biotechnology University, Alchevsky St., 44, Kharkiv, 61002, Ukraine
  • Department of tractors and cars, State Biotechnology University, Alchevsky St., 44, Kharkiv, 61002, Ukraine
  • Lviv National Agrarian University, Vol. Velykogo str., 1, 80381 Dubliany, Ukraine
  • Department of cars and tractors, Lviv National Agrarian University, V.Valyki Street, 1, Dubliany, 80381, Ukraine
  • Soft Serve Digital Consulting Company, Lviv, Ukraine
  • Faculty of Production and Power Engineering, University of Agriculture in Krakow, ul. Balicka 116 B, 30-149, Kraków, Poland
  • Faculty of Production and Power Engineering, University of Agriculture in Krakow, ul. Balicka 116 B, 30-149, Kraków, Poland
  • Department of Industry Engineering, Poltava State Agrarian University, St. Skovoroda 1/3, Poltava,36003, Ukraine
  • Department of Industry Engineering, Poltava State Agrarian University, St. Skovoroda 1/3, Poltava,36003, Ukraine
Bibliografia
  • [1] Kurpaska, S.; Latała, H.; Kiełbasa, P.; Sporysz, M.; Gliniak, M.; Famielec, S.; Bogusława. Experimental and modeling approach to heat and mass transfer in a porous bed of a rock-bed heat accumulator. International Journal of Heat and Miass Transfer 2021, Volume 132, 179.
  • [2] Hu, Y., Wu, S., Withers, P.J., Cao, H., Chen, P., Zhang, Y., Shen, Z., Vojtek, T., Hutař, P. Corrosion fatigue lifetime assessment of high-speed railway axle EA4T steel with artificial scratch. Engineering Fracture Mechanics 2021, Volume 245, 107588.
  • [3] Jafari, D., Vaneker, T.H.J., Gibson, I. Wire and arc additive manufacturing: Opportunities and challenges to control the quality and accuracy of manufactured parts. Materials and Design 2021, Volume 202, 109471.
  • [4] Meng, L., Zhu, B., Xian, C., Zeng, X., Hu, Q., Wang, D. Comparison on the wear properties and rolling contact fatigue damage behaviors of rails by laser cladding and laser-inductionhybrid cladding. Wear 2020, Volume 458-459, 203421.
  • [5] Sun, Q., Zhou, J., Li, P. Simulations and Experiments on the Micro-Milling Process of a Thin-Walled Structure of Al6061-T6. Materials 2022, Volume 15(10), 3568
  • [6] Efremenko, B.V., Chabak, Y.G., Efremenko, V.G., Vlasovets, V.M. Kinetics of structure transformation in pulsed plasma high Cr coatings under post-heat treatment. Functional Materials 2020, Volume 27(1), pp. 117-124.
  • [7] Pawłowski, S.; Plewako, J.; Korzeniewska, E. Influence of Structural Defects on the Resistivity and Current Flow Field inConductive Thin Layers. Electronics 2020, 9, 2164. https://doi.org/10.3390/electronics9122164
  • [8] Pawłowski, S.; Plewako, J.; Korzeniewska, E. Influence of the geometry of defects in textronic structures on their electricalproperties; Journal of Physics: Conference Series, Volume 1782, 2020 Applications of Electromagnetics in Modern Engineering and Medicine (PTZE 2020) 13-16 September 2020, virtual meeting, Poland; 012027
  • [9] Kovalyshyn, S., Kharchenko, S., Borshch, Y., Piven, M., Abduev, M., Miernik, A., Popardowski, E., Kiełbasa, P. Modeling of aerodynamic separation of preliminarily stratified grain mixture in vertical pneumatic separation duct. Applied Sciences (Switzerland) 2021, Volume 11(10).
  • [10] Cantor, B., Chang, I.T.H., Knight, P., Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering 2004, A, Volume 375-377(1-2 SPEC. ISS.), pp. 213-218.
  • [11] Yangfan, W., Xizhang, C., Chuanchu, S. Microstructure and mechanical properties of Inconel 625 fabricated by wire-arc additive manufacturing. Surface and Coatings Technology 2019, Volume 374, pp. 116-123.
  • [12]ASTM E384-17 «Standard Test Method for Microindentation Hardness of Materials»
  • [13] Van Der Voort, G.F. Avoid Microindentation Hardness testing at low loads! ASTM Special Technical Publication 2019, pp. 66-73.
  • [14] Petrík, J., Blaško, P., Mihaliková, M., Vasilňáková, A., Mikloš, V. The relationship between the deformation and the indentation size effect (ISE). Metallurgical Research and Technology 2019, Volume 116(6).
  • [15] Petrík, J., Blaško, P., Mikloš, V., Pribulová, A., Futaš, P., Vasilňaková, A., Šolc, M. The load dependence of the microhardness of the blast furnace slag. Metallurgical and MaterialsEngineering 2020, Volume 26(3), pp. 329-340.
  • [16] Blaško, P., Kupková, M., Petrík, J., Futaš, P., Vasilňaková, A. The indentation size effect of sintered Fe/3.3 wt-%Cu + CnHm measured by Vickers scale. Materials Science and Technology (United Kingdom) 2020, Volume 36(4), pp. 403-408.
  • [17] Pastrňák, M., Hilšer, O., Rusz, S., Reška, V., Szkandera, P. Zabystrzan, R. Effect of processing route on microstructure andmicrohardness of low-carbon steel subjected to drece process, Metal 2021 - 30th Anniversary International Conference on Metal-lurgy and Materials, Conference Proceedings 2021, pp. 323-328.
  • [18] Karthick, K., Malarvizhi, S., Balasubramanian, V. Microstructural characterization of dissimilar weld joint between ferritic steel and stainless steel. Materials Science and Technology (United Kingdom) 2021, 37(15), pp. 1257-1269.
  • [19] Papadopoulou, S., Pressas, I., Vazdirvanidis, A., Pantazopoulos, G. Fatigue failure analysis of roll steel pins from a chain assembly: Fracture mechanism and numerical modeling. Engineering Failure Analysis 2019, 101, pp. 320-328.
  • [20] Petrík, J. On the Load Dependence of Micro-Hardness Measurements: Analysis of Data by Different Models and Evaluation of Measurement Errors. Archives of Metallurgy and Materials 2016, Volume 61(4), pp. 1819-1824.
  • [21] Petrík, J., Palfy, P. The influence of the load on the hardness. Metrology and Measurement Systems 2011, 18(2), pp. 5.
  • [22] Saha, D.C., Biro, E., Gerlich, A.P., Zhou, Y. Martensite tempering kinetics: Effects of dislocation density and heating rates. Materials Characterization 2020, 168.
  • [23] Baharvand, M., Zanganeh, A., Mirzadeh, H., Habibi Parsa, M. Effects of hot rolling and homogenisation treatment on low alloy steel ingot. Materials Science and Technology (United Kingdom) 2020, 36(7), pp. 835-842.
  • [24] Tong, Z., Liu, H., Jiao, J., Zhou, W., Yang, Y., Ren, X. Microstructure, microhardness and residual stress of laser additive manufactured CoCrFeMnNi high-entropy alloy subjected to laser shock peening. Journal of Materials Processing Technology 2020, 285.
  • [25] Petrík, J., Blaško, P., Markulík, Š., Šolc, M., Palfy, P. The Indentation Size Effect (ISE) of Metals. Crystals 2022, 12(6).
  • [26] XU, Z., PENG, L., BAO, E.. Size effect affected springback in micro/meso scale bending process: Experiments and numerical modeling. Journal of Materials Processing Technology 2018, 252, pp. 407-420.
  • [27] Bhattacharya, S., Kundu, R., Bhattacharya, K., Poddar, A.,Roy, D. Micromechanical hardness study and the effect of reverse indentation size on heat-treated silver doped zinc molybdate glass nanocomposites. Journal of Alloys and Compounds 2019, 770, pp. 136-142.
  • [28] Sangwal, K. On the reverse indentation size effect and microhardness measurement of solids. Materials Chemistry and Physics 2000, 63(2), pp. 145-152.
  • [29] Shilin, C., Wei, S. An algorithm for indentation image classification and detection based on deep learning. Measurement: Sensors 2021, 18.
  • [30] Chaanthini, M.K., Arul, S. Effect of surface modification using gtaw as heat source and cryogenic treatment on the surface hardness and its prediction using artificial neural network. Lecture Notes in Mechanical Engineering 2018, Volume PartF7, Pages 185.
  • [31] Rajarajan, C., Sivaraj, P., Sonar, T., Raja, S., Mathiazhagan, N. Investigation on microstructural features and tensile shear fracture properties of resistance spot welded advanced high strength dual phase steel sheets in lap joint configuration forau-tomotive frame applications. Journal of the Mechanical Behavior of Materials 2022, 31(1), pp. 52-63.
  • [32] Globa, S., Simmons, T., Navarro, D., Aranda, M., Ravi, V.A. Effect of austenite stability in pack aluminizing of stainless steels. NACE - International Corrosion Conference Series 2018, Volume 2018
  • [33] Aucott, B. Current trends in metal analysis. Foundry TradeJournal 2004, 178(3614), pp. 154-155.
  • [34] Kharchenko, S., Borshch, Y., Kovalyshyn, S., Piven, M., Abduev, M., Miernik, A., Popardowski, E., Kiełbasa, P. Modeling of aerodynamic separation of preliminarily stratified grain mixture in vertical pneumatic separation duct (2021) Applied Sciences (Switzerland), 11 (10), art. no. 4383.
  • [35] Oziembłowski, M., Nawirska-Olszańska, A., Maksimowski, D., Trenka, M., Break, A., Kulig, D., Miernik, A. The effect of concentrated microwave field (Cmf) on selected physical and rheological properties of liquid egg products (2021) Applied Sciences (Switzerland), 11 (4), art. no. 1832, pp. 1-19.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b42984f-b768-453f-a5bc-8f59ee933a49
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.