Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Analiza statycznej stabilności napięciowej systemu energetycznego wzbogaconego o system fotowoltaiczny
Języki publikacji
Abstrakty
This paper analyses the effect of grid-connected PV systems on static voltage stability using the IEEE 69 radial distribution system. The effect of integrating PV generators into power systems with higher PV penetration level and multiple numbers of PV generators is analyzed using PV curve and improved voltage stability index (IVSI). The P-V curve data show that grid-connected PV systems improve loading margin and voltage magnitude. The IVSI gives a positive output because systems with integrated PV generators reach the voltage collapse point.
W artykule analizowany jest wpływ podłączenia systemu fotowoltaicznego na na stabilność napięcia w radialnym systemie energetycznym IEEE 69. Analizowane są zależność P-V oraz indeks stabilności napięciowej IVSI. Podłączenie systemu fotowoltaicznego poprawia margines obciążenia sieci.
Wydawca
Czasopismo
Rocznik
Tom
Strony
113--117
Opis fizyczny
Bibliogr. 21 poz., rys., wykr.
Twórcy
autor
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
autor
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Bibliografia
- [1] Kundur, P., Paserba, J., Ajjarapu, V., Andersson, G., Bose, A., Canizares, C., Hatziargyriou, N., Hill, D., Stankovic, A., Taylor, C., Van Cutsem, T., Vittal, V., 2004. Definition and classification of power system stability IEEE/CIGRE join task force on stability terms and definitions. IEEE Transactions on Power Systems, 9 (3), 1387-1401.
- [2] Tan, Y.T., Kirschen, D.S., 2007. Impact on the power system of a large penetration of photovoltaic generation. IEEE Power Engineering Society General Meeting, 1-7.
- [3] Srisean, N., Sangswang, A., 2006. Effects of PV gridconnected system location on a distribution system. Proceeding of IEEE Asia Pacific Conference Circuits and Systems, 852-855.
- [4] Liu, Y., Bebic, J., Kroposki, B., de Bedout, J., Ren, W., 2008. Distribution system voltage performance analysis for highpenetration PV. Proceeding of IEEE Energy 2030 Conference, 1-8.
- [5] Azadani, E.N., Canizares, C., Bhattacharya, K., 2012. Modeling and stability analysis of distributed generation. IEEE Transaction on Power and Energy Society General Meeting, 1- 8.
- [6] Shah, R., Mithulananthan, N., Bansal, R.C., Lee, K.Y., Lami, A., 2011. Power system voltage stability as affected by largescale PV penetration. International Conference on Electrical Engineering and Informatics (ICEEI), 1-6.
- [7] Eftekharnejad, S., Vittal, V., Heydt, G. T., Keel, B., Loehr, J., 2013. Impact of increased penetration of photovoltaic generation on power systems. IEEE Transactions on Power Systems, 28 (2), 893-901.
- [8] Aziz, T., Dahal, S., Mithulananthan, N., Saha, T.K., 2010. Impact of widespread penetrations of renewable generation on distribution system stability. International Conference on Electrical and Computer Engineering (ICECE), 338-341.
- [9] Yan, R., Saha, T. K., 2012. Investigation of voltage stability for residential customers due to high photovoltaic penetrations. IEEE Transactions on Power Systems, 27 (2), 651-662.
- [10] Xue, Y., Manjrekar, M., Lin, C., Tamayo, M., Jiang, J.N., 2011. Voltage stability and sensitivity analysis of grid-connected photovoltaic systems. IEEE Transactions on Power and Energy Society General Meeting, 1-7.
- [11] Tomson, T., 2012. Fast dynamic processes of solar radiation. Solar Energy, 84 (2), 318-323.
- [12] Kern, E.C., Gulachenski, E.M., Kern, G.A., 1989. Cloud effects on distributed photovoltaic generation: Slow transients at the Gardner, Massachusetts photovoltaic experiment. IEEE Transactions on Energy Conversion, 4 (2), 184-190.
- [13] Tonkoski, R. Lopes, L.A.C., 2008. Voltage regulation in radial distribution feeders with high penetration of photovoltaic. IEEE Conference on Energy 2030, 1-7.
- [14] Chakravorty, M., Das,D., 2001. Voltage stability analysis of radial distribution networks. Electrical Power and Energy Systems, 23, 129-135.
- [15] Wong, J., Lim, Y.S., Tang, J.H., Morris, E., 2014. Gridconnected photovoltaic system in Malaysia: A review on voltage issues. Renewable and Sustainable Energy Reviews, 29, 535-545.
- [16] Moghavvemi, M., Faruque, O., 1998. Real-Time Contingency Evaluation and Ranking Technique. IEEE Proceeding on Generation, Transmission and Distribution, 145 (5).
- [17] Ismail, M., Rahman, T.K., 2005. Estimation of maximum loadability in power systems by using fast voltage stability index (FVSI). Power and Engineering Systems, 25, 181-189.
- [18] Azah, M., Jasmon, G.B., Yusoff, S., 1989. A Static Voltage Collapse Indicator using Line Stability Factors. Industrial Technology, 7 (1), 73-85.
- [19] Moghavvemi, M., Omar, F.M., 1998. Technique for contingency monitoring and voltage collapse prediction. IEEE Proceeding on Generation, Transmission and Distribution, 145, 634-640.
- [20] Tiwar, R., Niazi, K.R., Gupta, V., 2012. Line collapse proximity index for prediction of voltage collapse in power systems. Electrical Power and Energy Systems, 41, 105-111.
- [21] Yang, C.F., Lai, G.G., Lee, C.H., Su, C.T., Chang, G.W., 2012. Optimal setting of reactive compensation devices with an improved voltage stability index for voltage stability enhancement. Electrical Power and energy Systems, 37, 50- 57.
Identyfikator YADDA
bwmeta1.element.baztech-0b3f9ec8-7f6a-40a9-a7b7-4df530b13191