PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The sources of nutrients in waters of rivers in the wetland areas of Narew National Park in north-eastern Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study aimed at the attempt to identify and to evaluate the interaction intensity, and to classify the sources of river waters nutrients in the catchment of upper river Narew within Narew National Park (north-eastern Poland). The studies were carried out on Narew river within borders of Narew National Park, where 5 measurement-control points were localized as well as one near estuaries of its 5 tributaries (Awissa, Czaplinianka, Horodnianka, Turośnianka and Supraśl). Factor analysis (FA) from multi-dimensional group was applied for statistical processing of study results, because it is commonly used to describe and explore a large number of data. concentrations of analyzed chemicals depended on a water sampling point that was under anthropopression and geogenic conditions. Studies and results from analyses (FA and CA) allowed for identifying the main sources of river Narew nutrients within Narew National Park. These are: tributaries of river Narew, point and distributed runoffs, as well as shallow ground waters that transport components having anthropogenic and partially geogenic-lithologic origin. River Turośnianka supplies the largest loads of studied parameters to river Narew within Narew National Park boundaries. River Supraśl is the most contaminated tributary of river Narew.
Słowa kluczowe
Rocznik
Strony
1--7
Opis fizyczny
Bibliogr. 20 poz., tab., rys.
Twórcy
  • Technical University in Bialystok, Wiejska 45A, 15-351 Bialystok, Poland
Bibliografia
  • 1. Singh K.P., Malik A., Mohan D., Sinha S. 2004. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti river (India): a case study. Water Res., 38, 3980–3992.
  • 2. Vega M., Pardo R., Barrado E., Deban L. 1996. Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res., 32, 3581–3592.
  • 3. Malmqvist B., Rundle S. 2002. Threats to the running water ecosystems of the world. Environ. Conserv; 29(2), 134–153.
  • 4. Walsh C.J., Roy A.H., Feminella J.W., Cottingham P.D., Groffman P.M., Morgan II R.P. 2005. The urban streamsyndrome: current knowledge and the search for a cure. J. North Am. Benthol. Soc., 24(3), 706–723.
  • 5. Helena B., Pardo R., Vega M., Barrado E., Fernandez J.M., Fernandez L. 2000. Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga river, Spain) by principal component analysis. Water Res., 34, 807–816.
  • 6. Bengraine K., Marhaba T.F. 2003. Using principal component analysis to monitor spatial and temporal changes in water quality. J. Hazard. Mater. B, 100, 179–195.
  • 7. Voncina D.B., Dobcnik D., Novic M., Zupan J. 2002. Chemometric characterisation of the qualityof river water. Anal. Chim. Acta, 462, 87–100.
  • 8. Liu C.W., Lin K.H., Kuo Y.M. 2003. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci. Tot. Environ., 313, 77–89.
  • 9. 9. Reghunath R., Murthy T.R.S., Raghavan B.R. 2002. The utility of multivariate statistical techniquesin hydrogeochemical studies: an example from Karnataka, India. Water Res., 36, 2437–2442.
  • 10. Wunderlin D.A., Diaz M.P., Ame M.V., Pesce S.F., Hued A.C., Bistoni M.A. 2001. Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquia river basin (Cordoba-Argentina). Water Res., 35, 2881–2894.
  • 11. Simeonov V., Stratis J.A., Samara C., Zachariadis G., Voutsa D., Anthemidis A., Sofoniou M., Kouimtzis Th. 2003. Assessment of the surface water qualityin Northern Greece. Water Res., 37, 4119–4124.
  • 12. Moreno J.L., Navarro C., De las Heras J. 2006. Abiotic ecotypes in south-central Spanish rivers: reference conditions and pollution. Environ. Poll., 143, 388–396.
  • 13. Skoulikidis N.T., Amaxidis Y., Bertahas I., Laschou S., Gritzalis K. 2006. Analysis of factors driving stream water composition and synthesis of manage¬ment tools – a case study on small/medium Greek catchments. Sci. Total Environ., 362, 205–241.
  • 14. García-Pintado J., Martínez-Mena M., Barbera G.G., Albaladejo J., Castillo V.M. 2007. Anthropo-genic nutrient sources and loads from a Mediterranean catchment into a coastal lagoon Mar Menor, Spain. Sci. Total Environ., 373, 220–239.
  • 15. Lassaletta L. 2007. Flujos superficiales de nutrientes en una cuenca agrícola de Navarra. PhD thesis. Universidad Complutense de Madrid. Spain.
  • 16. Tisseuil C., Wade A.J., Tudesque L. 2008. Modeling the stream water nitrate dynamics in a 60,000 km2 European catchment, the garonne, Southwest France. J. Environ. Qual., 37, 2155–2169.
  • 17. Evans C.D., Davies T.D., Wigington Jr P.J., Tranter M., Kretscher W.A. 1996. Use of factor analysis to investigate processes controlling the chemical composition of four streams in Adirindack Mountaions. New York. J. Hydrol. 185, 297–316.
  • 18. Pionke H.B., Gburek W.J., Sharpley A.N., Schnabel R.R. 1996. Flow and nutrient export patterns for an agricultural hill-land watershed. Water Resour. Res., 32(6), 1795–1804.
  • 19. Witkowski D. 1997. Selected factors shaping the quality of surface water in a small lowland catch¬ments. Rocz. Gleb., 47(3-4), 5–21.
  • 20. Banaszuk H. (red.) 2004. Nature Podlasie-Narew National Park. Economics and Environment. Bialystok. p. 134.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b3c06a4-df79-4ec9-9461-cd74e7a8ddd0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.