Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The permanent magnet in-wheel motor (PMIWM) is a nonlinear, multivariable, strongly coupled and highly complex system. The key to the development and application of the PMIWM consists in the improvement of its control accuracy and dynamic performance. In order to effectively decouple the PMIWM, this paper presents a novel internal model control (IMC) approach based on the back-propagation neural network inverse (BPNNI) control method. First, theoretical analysis is conducted to show the existence of the PMIWM inverse system, to be modeled mathematically. The inverse system approximated and identified by the back-propagation neural network (BPNN) constitutes the back-propagation neural network inverse (BPNNI) system. Then, by cascading the BPNNI system on the left side of the original PMIWM system, a new decoupling, pseudo-linear system is established. Moreover, the 2-DOF internal model control (IMC) method is employed to design the extra closed-loop controller that further improves disturbance rejection and robustness of the whole system. Consequently, the proposed decoupling control approach incorporates the advantages of both the BPNNI and the IMC. Effectiveness of thus proposed control approach is verified by means of simulation and real-time hardware-in-the-loop (HIL) experiments.
Rocznik
Tom
Strony
961--972
Opis fizyczny
Bibliogr. 50 poz., rys., wykr., tab.
Twórcy
autor
- Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, 212013, China
- School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, 212013, China
autor
- School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, 212013, China
autor
- Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, 212013, China
- School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, 212013, China
Bibliografia
- [1] X. Sun, L. Chen, H. Jiang, and Z. Yang, “High-performance control for a bearingless permanent magnet synchronous motor using neural network inverse scheme plus internal model controllers”, IEEE Transactions on Industrial Electronics 63(6), 3479‒3488 (2016).
- [2] Y. Li, B. Li, X. Xu, and X. Sun, “A nonlinear decoupling approach using RBFNNI-based robust pole placement for a permanent magnet in-wheel motor”, IEEE Access 6, 1844‒1854 (2018).
- [3] R. He and Y. Xu, “Shift schedule of parallel hybrid electric vehicles under hybrid driving mode”, Journal of Jiangsu University (Natural Science Edition) 37(6), 657‒662 (2016).
- [4] S. Lyshevski, “Control of high-precision direct-drive mechatronic servos: Tracking control with adaptive friction estimation and compensation”, Mechatronics 43, 1‒5 (2017).
- [5] C. Pan, L. Zhang, L. Chen, H. Jiang, and Y. Ding, “Heating analysis and experiment of lithium battery for different discharge rates”, Journal of Jiangsu University (Natural Science Edition) 38(2), 133‒138 (2017).
- [6] X. Sun, B. Su, L. Chen, Z. Yang, and K. Li, “Design and analysis of interior composite-rotor bearingless permanent magnet synchronous motors with two layer permanent magnets”, Bull. Pol. Ac.: Tech. 65(6), 833‒843 (2017).
- [7] B. Li, A. Goodarzi, A. Khajepour, S. Chen, and B. Litkouhi, “An optimal torque distribution control strategy for four-independent wheel drive electric vehicles”, Vehicle System Dynamics 53(8), 1172‒1189 (2015).
- [8] X. Sun, Z. Xue, S, Han, L. Chen, X. Xu, and Z. Yang, “Comparative study of fault-tolerant performance of a segmented rotor SRM and a conventional SRM”, Bull. Pol. Ac.: Tech. 65(3), 375‒381 (2017).
- [9] N. Zhang, C. Zhou, Z. Gao, and Y. Li, “Torque distribution strategy of PHEV based on FCMAC neural network”, Journal of Jiangsu University (Natural Science Edition) 38(6), 652‒657, (2017)
- [10] X. Sun, B. Su, L. Chen, Z. Yang, X. Xu, and Z. Shi, “Precise control of a four degree-of-freedom permanent magnet biased active magnetic bearing system in a magnetically suspended direct-driven spindle using neural network inverse scheme” Mechanical Systems and Signal Processing 88, 36‒48 (2017).
- [11] K. Urbanski, “A new sensorless speed control structure for PMSM using reference model”, Bull. Pol. Ac.: Tech. 65(4), 489‒496 (2017).
- [12] L. Wang, “Automatic tuning of PID controllers using frequency sampling filters”, IET Control Theory & Applications 15(5), 835‒842 (2017).
- [13] J. Zhou, Q. Deng, and C. Kang, “Regular expression matching algorithm based on parameters setting”, Journal of Jiangsu University (Natural Science Edition 37(2), 194‒200 (2016).
- [14] A. Ammar, A. Bourek, and A. Benakcha, “Nonlinear SVM-DTC for induction motor drive using input-output feedback linearization and high order sliding mode control”, ISA Transactions 67, 428‒442 (2017).
- [15] A. Khedher, and M. Mimouni, “Sensorless-adaptive DTC of double star induction motor original”, Energy Conversion and Management 51(12), 2878‒2892 (2010).
- [16] M. Janaszek, “Structures of vector control of n-phase motor drives based on generalized Clarke transformation”, Bull. Pol. Ac.: Tech. 64 (4), 865‒872 (2016).
- [17] Q. Song, H. Wan, Y. Mi, and S. Ye, “Optimum control strategy of drive torque for pure electric vehicles during acceleration”, Journal of Jiangsu University (Natural Science Edition), 38(1), 1‒6 (2017).
- [18] J. Manton, “A Primer on Stochastic Differential Geometry for Signal Processing”, IEEE Journal of Selected Topics in Signal Processing 7(4), 681‒699 (2013).
- [19] J. Manton, D. Applebaum, S. Ikeda, and N. Bihan, “Introduction to the issue on differential geometry in signal processing”, IEEE Journal of Selected Topics in Signal Processing 7(4), 573‒575 (2013).
- [20] W. Huang, M. Yu, W. Fu, Y. Fan, Q. Wang, and P. Sun, “Analysis of influencing factors on testing results of vehicle roller anti-force brake testing platform” Journal of Jiangsu University (Natural Science Edition) 37(4), 497‒502 (2017).
- [21] Y. Huang, S. Fard, M. Khazraee, H. Wang, and A. Khajepour, “An adaptive model predictive controller for a novel battery-powered anti-idling system of service vehicles”, Energy 127, 318‒327 (2017).
- [22] Y. Huang, A. Khajepour, F. Bagheri, M. Bahrami, and J. Yan, “Optimal energy-efficient predictive controllers in automotive air-conditioning/refrigeration systems”, Applied Energy, 184, 605‒618 (2016).
- [23] G. Liu, L.Chen, W.Zhao, Y. Jiang, and L. Qu, “Internal Model Control of Permanent Magnet Synchronous Motor Using Support Vector Machine Generalized Inverse”, IEEE Transactions on Industrial Informatics 9(2), 890‒898 (2013).
- [24] R. Zhong, Y. Xu, Y. Cao, X. Guo, W. Hua, S. Xu, and W. Sun, “Accurate model of switched reluctance motor based on indirect measurement method and least square support vector machine”, IET Electric Power Applications 10(9), 916‒922 (2016).
- [25] Z. Li, W. Wang, X. Xu, and K. Jiang, “Willans model of electric motor for electric vehicle based on least squares support vector machine”, Journal of Jiangsu University (Natural Science Edition) 37(4), 381‒385 (2016).
- [26] S. Vazquez, J. Gomez, J. Gamazo, and J. Femando, “A New Method for Sensorless Estimation of the Speed and Position in Brushed DC Motors Using Support Vector Machines”, IEEE Transactions on Industrial Electronics 59(3), 1397‒1408 (2012).
- [27] C. Rojas, J. Rodriguez, S. Kouro, and F. Villarroel, “Multiobjective Fuzzy-Decision-Making Predictive Torque Control for an Induction Motor Drive”, IEEE Transactions on Power Electronics 32(8), 6245–6260 (2017).
- [28] R. Sun, R. Song, and K.Tong, “Complexity Analysis of EMG Signals for Patients After Stroke During Robot-Aided Rehabilitation Training Using Fuzzy Approximate Entropy”, IEEE Transactions on Neural Systems and Rehabilitation Engineering 22(5), 1013‒1019 (2014).
- [29] K. Tan, “Squirrel-Cage Induction Generator System Using Wavelet Petri Fuzzy Neural Network Control for Wind Power Applications”, IEEE Transactions on Power Electronics 31(7), 5242‒5254 (2016).
- [30] C. Li and L. Wu, “Sliding mode control for synchronization of fractional permanent magnet synchronous motors with finite time”, Optik-International Journal for Light and Electron Optics 127(6), 3329‒3332 (2016).
- [31] J. Yang, M. Dou, and D. Zhao, “Iterative sliding mode observer for sensorless control of five-phase permanent magnet synchronous motor”, Bull. Pol. Ac.: Tech. 65 (6), 845‒857 (2017).
- [32] Y. Huang, A. Khajepour, H. Ding, F. Bagheri, and M. Bahrami, “An energy-saving set-point optimizer with a sliding mode controller for automotive air-conditioning/refrigeration systems”, Applied Energy 188, 576‒585 (2017).
- [33] R. Khanna, Q. Zhang, W. Stanchina, G. Reed, and Z. Mao, “Maximum Power Point Tracking Using Model Reference Adaptive Control”, IEEE Transactions on Power Electronics 29(3), 1490‒1499 (2014).
- [34] C. Aguila and M. Duarte, “Improving the control energy in model reference adaptive controllers using fractional adaptive laws”, IEEE/CAA Journal of Automatica Sinica 3(3), 332‒337 (2016).
- [35] P. Parenti, M. Leonesio, and G. Bianchi, “Model-based adaptive process control for surface finish improvement in traverse grinding”, Mechatronics 36, 97‒111 (2016).
- [36] H. Jiang, C. Li, S. Ma, S. Ding, and C. Zhang, “Path tracking control of automatic parking for intelligent vehicle based on nonsmooth control strategy”, Journal of Jiangsu University (Natural Science Edition) 38(5), 497‒502 (2017).
- [37] H. Yu, T. Chen, and C. Liu, “Adaptive Fuzzy Logic Proportional-Integral-Derivative Control for a Miniature Autofocus Voice Coil Motor Actuator With Retaining Force”, IEEE Transactions on Magnetics 50(11), 1‒4 (2014).
- [38] F. Lin, I. Sun, K. Yang, and J. Chang, “Recurrent Fuzzy Neural Cerebellar Model Articulation Network Fault-Tolerant Control of Six-Phase Permanent Magnet Synchronous Motor Position Servo Drive”, IEEE Transactions on Fuzzy Systems 24(1), 153‒167 (2016).
- [39] A. Rubaai and P. Young, “Hardware/Software Implementation of Fuzzy-Neural-Network Self-Learning Control Methods for Brushless DC Motor Drives”, IEEE Transactions on Industry Applications 52(1), 414‒424 (2016).
- [40] F. Sousy, “Intelligent Optimal Recurrent Wavelet Elman Neural Network Control System for Permanent-Magnet Synchronous Motor Servo Drive”, IEEE Transactions on Industrial Informatics 9(4), 1986‒2003 (2013).
- [41] X. Diao and H. Zhu, “Survey of decoupling control strategies for bearingless synchronous reluctance motor”, Journal of Jiangsu University (Natural Science Edition) 38(6), 687‒695 (2017).
- [42] T. Shi, Z. Qiao, C. Xia, H. Li, and Z. Song, “Modeling, analyzing, and parameter design of the magnetic field of a segmented halbach cylinder”, IEEE Transactions on Magnetics 48(5), 1890‒1898 (2012).
- [43] G. Pathak, B. Singh, and B. Panigrahi, “Back-Propagation Algorithm-Based Controller for Autonomous Wind–DG Microgrid”, IEEE Transactions on Industry Applications, 52(5), 4408–4415 (2016).
- [44] B. Singh and S. Arya, “Back-Propagation Control Algorithm for Power Quality Improvement Using DSTATCOM”, IEEE Transactions on Industrial Electronics 61(3), 1204–1212 (2014).
- [45] H. Li, Q. Li, and J. Bai, “Automatic Control Systems of Electric Drive”, China Machine Press, 2009.
- [46] P. Gillella, X. Song, and Z. Sun, “Time-Varying Internal Model-Based Control of a Camless Engine Valve Actuation System”, IEEE Transactions on Control Systems Technology 22(4), 1498‒1510 (2014).
- [47] Y. He, S. Zheng, and J. Fang, “Start-up current adaptive control for sensorless high-speed brushless DC motors based on inverse system metnod and internal mode controller”, Chinese Journal of Aeronautics 30(1), 358‒367 (2017).
- [48] X. Sun, Z. Shi, L. Chen, and Z. Yang, “Internal model control for a bearingless permanent magnet synchronous motor based on inverse system method”, IEEE Transaction on Energy Conversion 31(4), 1539‒1548 (2016).
- [49] X. Sun, L. Chen, Z. Yang, and H. Zhu, “Speed-sensorless vector control of a bearingless induction motor with artificial neural network inverse speed observer”, IEEE/ASME Transactions on Mechatronics 18(4), 1357‒1366 (2013).
- [50] S. Li and H. Gu, “Fuzzy Adaptive Internal Model Control Schemes For PMSM Speed-Regulation System”, IEEE Transactions on Industrial Informatics 8(4), 767‒779 (2012).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b384818-9ee1-4b2a-9d41-a9c5210db17c