PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of ultrasonic pre-treatment on coal slime flotation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Combined with the characteristics of flotation feed originating from China’s Panyidong Coal Preparation Plant, the ash, zeta potential, X-ray fluorescence spectroscopy and contact angle test were used to study changes in the surface properties of flotation feed under ultrasonic pre-treatment, and its effect on flotation of coal slime. Results show that Preferred pre-treatment process is ultrasonic secondary treatment, ultrasonic secondary pre-treatment can remove most of the high-ash fine mud for instance kaolinite, montmorillonite and quartz in the coal slurry, reduce the surface electronegativity of coal particles, and increase the contact angle of coal particles. Thus, the concentrate ash content decreases to 13%, the recovery rate, yield of flotation concentrate and combustible matter recovery reach 92.6%, 90.9% and 97.6%, respectively.
Rocznik
Strony
173--183
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
  • State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Mines, Huainan 232001, China
  • Department of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
autor
  • State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Mines, Huainan 232001, China
  • Department of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
  • Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education, Xuzhou 221116, China
autor
  • Department of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
autor
  • Department of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
autor
  • Department of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
Bibliografia
  • ALTUN, N.E., HWANG, J.Y., HICYILMAZ, C., 2009. Enhancement of flotation performance of oil shale cleaning by ultrasonic treatment. International Journal of Mineral Processing. 91, 1-13.
  • AMBEDKAR, B., CHINTALA, T.N., NAGARAJAN, R., JAYANTI, S., 2011. Feasibility of using ultrasound-assisted process for sulfur and ash removal from coal. Chemical Engineering and Processing. 50, 236-246.
  • AMBEDKAR, B., NAGARAJAN, R., JAYANTI, S., 2011. Ultrasonic coal-wash for de-sulfurization. Ultrasonics Sonochemistry. 18, 718-726.
  • ASHOKKUMAR, M., 2015. Applications of ultrasound in food and bioprocessing. Ultrasonics Sonochemistry. 25, 17-23.
  • BALRAJ, A., NAGARAJAN, R., JAYANTI, S., 2011. Investigation of High-Frequency, High-Intensity Ultrasonics for Size Reduction and Washing of Coal in Aqueous Medium. Industrial & Engineering Chemistry Research. 50, 13210-13219.
  • BARMA, S.D., 2019. Ultrasonic-assisted coal beneficiation: A review. Ultrasonics Sonochemistry. 50, 15-35.
  • CAI, C.F., SHI, H., YAN, Q.R., YU, H., 2001. Research on the Approach to Lowering Down Ash Content in Clean Coal from Flotation Process. Coal Preparation Technology. 6, 20-22.
  • CAI, N.G., LIU, R.S., GUI, X.H., 2015. Experimental study on ash reduction of hard-to-separate and high-ash coal by flotation. Coal Preparation Technology. 3, 21-25.
  • GUNGOREN, C., OZDEMIR, O., OZKAN, S.G., 2017. Effects of temperature during ultrasonic conditioning in quartzamine flotation. Physicochemical Problems of Mineral Processing. 53,687-698.
  • CELIK, M.S., 1989. Effect of Ultrasonic Treatment on the Floatability of Coal and Galena. Separation Science and Technology. 24, 1159-1166.
  • NI, C., XIE, G.Y., JIANG, Z.G., LIU, B., PENG, Y.L., 2013. Problem analysis and optimization test for “2+2” coal slime separation process. Journal of China Coal Society. 38, 2035-2041.
  • CHEN, J., MIN, F.F., LIU, L.Y., 2019. The interactions between fine particles of coal and kaolinite in aqueous, insights from experiments and molecular simulations. Applied Surface Science. 467, 12-21.
  • CHEN, J., MIN, F.F., PENG, C.L., LIU, C.F., CHEN, S., CHEN, C., 2015. Characteristics of the hydrophobic aggregation of fine particles in coal slurry water under the action of quaternary ammonium salt. Journal of China University of Mining and Technology. 44,332-340.
  • CHEN, L.Z., ZENG, J.W., GUAN, C.P., ZHANG, H.F., YANG, R.Y., 2015. High gradient magnetic separation in centrifugal field. Minerals Engineering. 78,122-127.
  • CILEK, E.C., OZGEN, S., 2009. Effect of ultrasound on separation selectivity and efficiency of flotation. Minerals Engineering. 22, 1209-1217.
  • CUI, G.W., ZHU, S.Q., ZOU, L.Z., XIE, W.W., 2007. Effects of High-Power Ultrasonic Treatment on the Slurryability of Coals. Journal of China University of Mining and Technology. 17, 562-565.
  • FARMER, A.D., COLLINGS, A.F., JAMESON, G.J., 2000. Effect of ultrasound on surface cleaning of silica particles. International Journal of Mineral Processing. 60, 101-113.
  • GOKTEPE, F., IPEK, H., GOKTEPE, M., 2011. Benefıcıatıon of quartz waste by flotatıon and by ultrasonıc treatment. Physicochemical Problems of Mineral Processing. 47,41-50.
  • HE, L.J., CHEN, J.Z., SHEN, L.J., WANG, Y., YUAN, P.F., WANG, Y.F., LIU, S.L., JI, W.L., 2009. Experimental study on reducing ash flotation coal. Coal Processing & Comprehensive Utilization. 4, 1-4.
  • KANG, W.Z., LV, Y.T., 2006. Effect of ultrasonic treatment on slime characteristics. Journal of China University of Mining and Technology. 35, 783.
  • KANG, W.Z., XUN, H.X., CHEN, J.T., 2007. Study of Enhanced Fine Coal De-sulphurization and De-ashing by Ultrasonic Flotation. Journal of China University of Mining and Technology. 17, 358-362.
  • KANG, W.Z., XUN, H.X., HU, J., 2008. Study of the effect of ultrasonic treatment on the surface composition and the flotation performance of high-sulfur coal. Fuel Processing Technology. 89, 1337-1344.
  • KOPPARTHI, P., BALAMURUGAN, S., MUKHERJEE, A.K., 2017. Effect of Ultrasonic Pre-treatment Time on Coal Flotation. International Journal of Coal Preparation and Utilization, 1-17.
  • LI, S., WU, W.F., SHI, K.Y., 2017. Preliminary Study on Floatation of Flotation Column for Ertang Coal Slime. International Journal of Energy and Environmental Science. 2, 12-15.
  • MAO, Y.Q., PENG, Y.L., BU, X.N., XIE, G.Y., WU, E., XIA, W.C., 2018. Effect of ultrasound on the true flotation of lignite and its entrainment behavior. Energy Sources Part A Recovery Utilization and Environmental Effects. 40, 1-11
  • MASON, T.J., COLLINGS, A., SUMEL, A., 2004. Sonic and ultrasonic removal of chemical contaminants from soil in the laboratory and on a large scale. Ultrasonics Sonochemistry. 11, 205-210.
  • Min, F.F., Peng, C.L., Song, S.X., 2014. Hydration Layers on Clay Mineral Surfaces in Aqueous Solutions: a Review. Archives of Mining Sciences. 59, 489-500.
  • OZKAN, S.G., 2002. Beneficiation of magnesite slimes with ultrasonic treatment. Minerals Engineering. 15, 99-101.
  • OZKAN, S.G., 2017. Further Investigations on Simultaneous Ultrasonic Coal Flotation. Minerals. 7, 1-9.
  • OZKAN, S.G., KUYUMUCU, H.Z., 2006. Investigation of mechanism of ultrasound on coal flotation. International Journal of Mineral Processing. 81, 201-203.
  • PENG, C.S., ZHANG, Q., XU, X.Y., YU, H.J., MA, L., 2010. Effect of Aggregation and Dispersion on Zeta Potential of Suspensions. Periodical of Ocean University of China. 10, 121-126.
  • PENG, Y.L., MAO, Y.Q., XIA, W.C., LI, Y.F., 2018. Ultrasonic flotation cleaning of high-ash lignite and its mechanism. Fuel. 220, 558-566.
  • RAMAN, V., ABBAS, A., 2008. Experimental investigations on ultrasound mediated particle breakage. Ultrasonics Sonochemistry. 15, 55-64.
  • REN, R.C., CHENG, M., ZHANG, G.W., LI, C.X., 2014. Study on small taper angle hydrocyclone for pre- desliming flotation process of a difficult- to- float coal slime. Journal of the China Coal Society. 39, 543-548.
  • SAIKIA, B.K., DUTTA, A.M., SAIKIA, L., AHMED, S., BARUAH, B.P., 2014. Ultrasonic assisted cleaning of high sulphur Indian coals in water and mixed alkali. Fuel Processing Technology. 123, 107-113.
  • SINGH, R.K., DAS, A., 2013. Analysis of separation response of Kelsey centrifugal jig in processing fine coal. Fuel Processing Technology. 115, 71-78.
  • SONMEZ, E., KOCA, S., OZDAG, H., IPEK, H., 2004. Beneficiation of colemanite concentrates from fine wastes by using ultrasound waves. Minerals Engineering. 17, 359-361.
  • XIE, G.Y., WU, L., OU, Z.S., YU, H.S., 2009. Research on fine coal classified flotation process and key technology. Procedia Earth and Planetary Science. 1, 701-705.
  • XU, M.D., XIANG, Y.W., GUI, X.H., CAO, Y.J., WANG, D.Y., WANG, L.W., 2017. Effect of Ultrasonic Pretreatment on Oxidized Coal Flotation. Energy & Fuels. 31, 14367-14373.
  • YU, Y.X., MA, L.Q., ZHANG, Z.L., WANG, L.Y., YAO, L.Y., 2015. Mechanism of entrainment and slime coating on coal flotation. Journal of the China Coal Society. 40, 652-658
  • MAO, Y.Q., XIE, G.Y., LIANG, L., XIA, W.C., PENG, Y.L., 2019. Effects of ultrasonic treatment on the particle size, shape and ash content of fine coal. Physicochemical Problems of Mineral Processing. 55,679-688
  • ZHANG, M.Q., LIU, J.T., WANG, Y.T., 2008. Coalification ranking affected to settling performance of slurry water. Coal Science and Technology. 36, 102-104.
  • ZHENG, M., XU, C.Y., ZHANG, M.X., ZHANG, M.L., 2005. Research on ash reduction access for floated cleaned coal in Wangfenggang Coal Preparation Plant. Coal Engineering. 5, 61-63.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b36fd85-f9c7-463d-8b7c-fdb8851a63d0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.