PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cell-based clinical and experimental methods for assisting the function of impaired livers – Present and future of liver support systems

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Currently, one of the most serious public health issues is the increasing number of cases of chronic liver disease and cirrhosis both of which can lead to liver failure. The only effective method of treatment for this life-threatening condition remains liver transplantation. Unfortunately, the chronic shortage of transplantable organs seriously limits its accessibility to patients. Thus, tremendous research has been done to develop methods capable of replacing liver transplantation by artificial means or to create techniques to partially or fully replace liver function in patients with impaired livers, until liver regeneration or transplantation. This review article is focused on research results that utilize living cells in order to establish bridging therapies in cases of liver failure. This includes both experimental and clinically tested techniques, such as hepatocyte transplantation and usage of the hybrid bioartificial liver devices. The article also discusses research which presents the long-term culture of hepatocytes in conditions that preserve their differentiated state, which is important for such applications as drug development and toxicity testing. Last but not least, the article describes the groundbreaking efforts toward building sophisticated scaffolds for hepatocyte culture that mimic their natural environment, which are based on decellularized tissues and on three-dimensional bioprinting.
Twórcy
  • Department of Hybrid Microbiosystems Engineering, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 01-109 Warsaw, Poland
  • Department of Hybrid Microbiosystems Engineering, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
  • Department of Hybrid Microbiosystems Engineering, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
  • Department of Hybrid Microbiosystems Engineering, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
  • Department of Hybrid Microbiosystems Engineering, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
  • [1] Mulaikal TA, Emond JC. Physiology and anatomy of the liver: Liver anesthesiology and critical care medicine. Springer [Chapter 1] 2012:3–20.
  • [2] Marcellin P, Kutala BK. Liver diseases: a major, neglected global public health problem requiring urgent actions and large-scale screening. Liver Int 2018;38(Suppl 1):2–6. https://doi.org/10.1111/liv.13682.
  • [3] Bernal W, Auzinger G, Dhawan A, Wendon J. Acute liver failure. Lancet 2010;376(9736):190–201. https://doi.org/10.1016/S0140-6736(10)60274-7.
  • [4] Kadyk LC, Collins LR, Littman NJ, Millan MT. Proceedings: moving toward cell-based therapies for liver disease. Stem Cells Transl Med 2015;4(3):207–10. https://doi.org/10.5966/sctm.2014-0276.
  • [5] Meirelles Júnior RF, Salvalaggio P, Rezende MBd, Evangelista AS, Guardia BD, Matielo CEL, et al. Liver transplantation: history, outcomes and perspectives. Einstein (São Paulo) 2015;13(1):149–52. https://doi.org/10.1590/S1679-45082015RW3164.
  • [6] Kmieć Z. Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol 2001;161:III–XIII, 1–151. doi: 10.1007/978-3-642-56553-3.
  • [7] Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, et al. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 2013;87(8):1315–530. https://doi.org/10.1007/s00204-013-1078-5.
  • [8] Rozga J, Piaôtek T, Małkowski P. Human albumin: old, new, and emerging applications. Ann Transplant 2013;18:205–17.doi: 10.12659/AOT.889188.
  • [9] Pimpin L, Cortez-Pinto H, Negro F, Corbould E, Lazarus JV, Webber L, et al. Burden of liver disease in Europe: epidemiology and analysis of risk factors to identify prevention policies. J Hepatol 2018;69(3):718–35. https://doi.org/10.1016/j.jhep.2018.05.011.
  • [10] Axley PD, Richardson CT, Singal AK. Epidemiology of alcohol consumption and societal burden of alcoholism and alcoholic liver disease. Clin Liver Dis 2019;23(1):39–50. https://doi.org/10.1016/j.cld.2018.09.011.
  • [11] Fierro NA. COVID-19 and the liver: What do we know after six months of the pandemic? Ann Hepatol 2020;S1665-2681:30166-6. Epub ahead of print. doi: 10.1016/j.aohep.2020.09.001.
  • [12] Rabiee A, Sadowski B, Adeniji N, Perumalswami P, Nguyen V, Moghe A, et al. Liver Injury in Liver Transplant Recipients with Coronavirus Disease 2019 (COVID-19): US Multicenter Experience. Hepatology 2020:Epub ahead of print. doi: 10.1002/hep.31574.
  • [13] Galle PR, Forner A, Llovet JM, Mazzaferro V, Piscaglia F, Raoul J-L, et al. EASL Clinical Practice Guidelines: management of hepatocellular carcinoma. J Hepatol 2018;69(1):182–236. https://doi.org/10.1016/j.jhep.2018.03.019.
  • [14] Li J, Wu Y, Shen N, Zhang J, Chen E, Sun J, et al. A fully automatic computer-aided diagnosis system for hepatocellular carcinoma using convolutional neural networks. Biocybern Biomed Eng 2020;40(1):238–48. https://doi.org/10.1016/j.bbe.2019.05.008.
  • [15] Gruber N, Antholzer S, Jaschke W, Kremser C, Haltmeier M. A Joint Deep Learning Approach for Automated Liver and Tumor Segmentation. 2019 13th Int Conf Sampl Theory Appl (SampTA), Bordeaux, Fr 2019:1–5. doi: 10.1109/SampTA45681.2019.9030909.
  • [16] Chien Y, Tsai P-H, Lai Y-H, Lu K-H, Liu C-Y, Lin H-F, et al. CircularRNA as novel biomarkers in liver diseases. J Chin Med Assoc 2020;83(1):15–7. doi: 10.1097/JCMA.0000000000000230.
  • [17] Lin B, Ma Y, Wu S, Liu Y, Liu L, Wu L. Novel serum biomarkers for noninvasive diagnosis and screening of nonalcoholic fatty liver disease-related hepatic fibrosis. OMICS 2019;23(4):181–9. https://doi.org/10.1089/omi.2019.0035.
  • [18] Jung A, Korohoda P, Krisper P, Stadlbauer V, Stauber RE, Schneditz D. Bile acid kinetic modeling in end-stage liver support patients. Biocybern Biomed Eng 2020;40(4):764–73. https://doi.org/10.1016/j.bbe.2020.03.002.
  • [19] Heron M. Deaths: leading causes for 2016. Natl Vital Stat Reports 2018;67(6):1–77.
  • [20] Kwong A, Kim WR, Lake JR, Smith JM, Schladt DP, Skeans MA, et al. OPTN/SRTR 2018 Annual Data Report: liver. Am J Transplant 2020;20(s1):193–299. https://doi.org/10.1111/ajt.v20.s110.1111/ajt.15674.
  • [21] García Martínez JJ, Bendjelid K. Artificial liver support systems: what is new over the last decade? Ann Intensive Care 2018;8:109. https://doi.org/10.1186/s13613-018-0453-z.
  • [22] Gomez-Lechon M, Donato M, Castell J, Jover R. Human hepatocytes as a tool for studying toxicity and drug metabolism. Curr Drug Metab 2003;4(4):292–312. https://doi.org/10.2174/1389200033489424.
  • [23] Lee D-H, Lee K-W. Hepatocyte isolation, culture, and its clinical applications. Hanyang Med Rev 2014;34(4):165–72. https://doi.org/10.7599/hmr.2014.34.4.165.
  • [24] Seglen PO. Preparation of isolated rat liver cells. Methods Cell Biol 1976;13:29–83. https://doi.org/10.1016/S0091-679X(08)61797-5.
  • [25] Mitry RR, Hughes RD, Dhawan A. Progress in human hepatocytes: isolation, culture & cryopreservation. Semin Cell Dev Biol 2002;13(6):463–7. https://doi.org/10.1016/S1084952102001350.
  • [26] Belaschk E, Rohn S, Mukiibi R, Reutzel-Selke A, Tang P, Sawitzki B, et al. Isolation, characterization and cold storage of cells isolated from diseased explanted livers. Int J Artif Organs 2017;40(6):294–306. https://doi.org/10.5301/ijao.5000594.
  • [27] Rowe C, Gerrard DT, Jenkins R, Berry A, Durkin K, Sundstrom L, et al. Proteome-wide analyses of human hepatocytes during differentiation and dedifferentiation. Hepatology 2013;58(2):799–809. https://doi.org/10.1002/hep.v58.210.1002/hep.26414.
  • [28] Ruoß M, Vosough M, Königsrainer A, Nadalin S, Wagner S, Sajadian S, et al. Towards improved hepatocyte cultures: progress and limitations. Food Chem Toxicol 2020;138:111188. https://doi.org/10.1016/j.fct.2020.111188.
  • [29] Bale SS, Golberg I, Jindal R, McCarty WJ, Luitje M, Hegde M, et al. Long-term coculture strategies for primary hepatocytes and liver sinusoidal endothelial cells. Tissue Eng Part C Methods 2015;21(4):413–22. https://doi.org/10.1089/ten.tec.2014.0152.
  • [30] Rieder H, zum Büschenfelde K-H, Ramadori G. Functional spectrum of sinusoidal endothelial liver cells. J Hepatol 1992;15(1-2):237–50. https://doi.org/10.1016/0168-8278(92)90042-N.
  • [31] Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 2008;88(1):125–72. https://doi.org/10.1152/physrev.00013.2007.
  • [32] Krause P, Saghatolislam F, Koenig S, Unthan-Fechner K, Probst I. Maintaining hepatocyte differentiation in vitro through co-culture with hepatic stellate cells. Vitr Cell Dev Biol – Anim 2009;45(5–6):205–12. https://doi.org/10.1007/s11626-008-9166-1.
  • [33] Rose KA, Holman NS, Green AM, Andersen ME, LeCluyse EL. Co-culture of hepatocytes and kupffer cells as an in vitro model of inflammation and drug-induced hepatotoxicity. J Pharm Sci 2016;105(2):950–64. https://doi.org/10.1016/S0022-3549(15)00192-6.
  • [34] Evenou F, Hamon M, Fujii T, Takeuchi S, Sakai Y. Gaspermeable membranes and co-culture with fibroblasts enable high-density hepatocyte culture as multilayered liver tissues. Biotechnol Prog 2011;27(4):1146–53. https://doi.org/10.1002/btpr.626.
  • [35] Samluk A, Zakrzewska KE, Pluta KD. Generation of fluorescently labeled cell lines, C3A hepatoma cells, and human adult skin fibroblasts to study coculture models. Artif Organs 2013;37(7):E123–30. https://doi.org/10.1111/aor.12064.
  • [36] Wencel A, Zakrzewska KE, Samluk A, Noszczyk BH, Pijanowska DG, Pluta KD. Dried human skin fibroblasts as a new substratum for functional culture of hepatic cells. Acta Biochim Pol 2017;64(2):357–63. https://doi.org/10.18388/abp.2016_1481.
  • [37] Wencel A, Ciezkowska M, Wisniewska M, Zakrzewska KE, Pijanowska DG, Pluta KD. Effects of Genetically Modified Human Skin Fibroblasts, Stably Overexpressing Hepatocyte Growth Factor, on Hepatic Functions of Co-cultured C3A Cells. Biotechnol Bioeng 2020:Epub ahead of print. doi: 10.1002/bit.27551.
  • [38] Gouliarmou V, Pelkonen O, Coecke S. Differentiation-promoting medium additives for hepatocyte cultivation and cryopreservation. Methods Mol Biol 2015;1250:143–59. https://doi.org/10.1007/978-1-4939-2074-7_10.
  • [39] Gómez-Lechón MJ, Castelli J, Guillén I, O’Connor E, Nakamura T, Fabra R, et al. Effects of hepatocyte growth factor on the growth and metabolism of human hepatocytes in primary culture. Hepatology 1995;21(5):1248–54. https://doi.org/10.1016/0928-4346(95)90466-K.
  • [40] Dong J, Mandenius C-F, Lübberstedt M, Urbaniak T, Nüssler AKN, Knobeloch D, et al. Evaluation and optimization of hepatocyte culture media factors by design of experiments (DoE) methodology. Cytotechnology 2008;57(3):251–61. https://doi.org/10.1007/s10616-008-9168-6.
  • [41] Inoue C, Yamamoto H, Nakamura T, Ichihara A, Okamoto H. Nicotinamide prolongs survival of primary cultured hepatocytes without involving loss of hepatocyte-specific functions. J Biol Chem 1989;264(9):4747–50.
  • [42] Mitaka T, Sattler CA, Sattler GL, Sargent LM, Pitot HC. Multiple cell cycles occur in rat hepatocytes cultured in the presence of nicotinamide and epidermal growth factor. Hepatology 1991;13(1):21–30. https://doi.org/10.1002/(ISSN)1527-335010.1002/hep.v13:110.1002/hep.1840130105.
  • [43] Bailly-Maitre B, De Sousa G, Boulukos K, Gugenheim J, Rahmani R. Dexamethasone inhibits spontaneous apoptosis in primary cultures of human and rat hepatocytes via Bcl-2 and Bcl-xL induction. Cell Death Differ 2001;8(3):279–88. https://doi.org/10.1038/sj.cdd.4400815.
  • [44] Matsui T, Kinoshita T, Morikawa Y, Tohya K, Katsuki M, Ito Y, et al. K-Ras mediates cytokine-induced formation of Ecadherin-based adherens junctions during liver development. EMBO J 2002;21(5):1021–30. https://doi.org/10.1093/emboj/21.5.1021.
  • [45] Lázaro CA, Croager EJ, Mitchell C, Campbell JS, Yu C, Foraker J, et al. Establishment, characterization, and long-term maintenance of cultures of human fetal hepatocytes. Hepatology 2003;38(5):1095–106. https://doi.org/10.1053/jhep.2003.50448.
  • [46] Zhang K, Zhang L, Liu W, Ma X, Cen J, Sun Z, et al. In vitro expansion of primary human hepatocytes with efficient liver repopulation capacity. Cell Stem Cell 2018;23(6):806–819.e4. https://doi.org/10.1016/j.stem.2018.10.018.
  • [47] Rojkind M, Ponce-Noyola P. The extracellular matrix of the liver. Coll Relat Res 1982;2(2):151–75. https://doi.org/10.1016/S0174-173X(82)80031-9.
  • [48] Bedossa P, Paradis V. Liver extracellular matrix in health and disease. J Pathol 2003;200(4):504–15. https://doi.org/10.1002/path.1397.
  • [49] Gelse K, Pöschl E, Aigner T. Collagens – structure, function, and biosynthesis. Adv Drug Deliv Rev 2003;55(12):1531–46. https://doi.org/10.1016/j.addr.2003.08.002.
  • [50] Michalopoulos G, Pitot HC. Primary culture of parenchymal liver cells on collagen membranes. Exp Cell Res 1975;94(1):70–8. https://doi.org/10.1016/0014-4827(75)90532-7.
  • [51] De Bruyn T, Chatterjee S, Fattah S, Keemink J, Nicolaï J, Augustijns P, et al. Sandwich-cultured hepatocytes: utility for in vitro exploration of hepatobiliary drug disposition and drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol 2013;9(5):589–616. https://doi.org/10.1517/17425255.2013.773973.
  • [52] Miyamoto S, Kathz B, Lafrenie R, Yamada K. Fibronectin and integrins in cell adhesion, signaling, and morphogenesis. Ann N Y Acad Sci 1998;857:119–29. doi: 10.1111/j.1749-6632.1998.tb10112.x.
  • [53] Blaauboer BJ, Paine AJ. Attachment of rat hepatocytes to plastic substrata in the absence of serum requires protein synthesis. Biochem Biophys Res Commun 1979;90(1):368–74. https://doi.org/10.1016/0006-291X(79)91634-6.
  • [54] Jasmund I, Schwientek S, Acikgöz A, Langsch A, Machens HG, Bader A. The influence of medium composition and matrix on long-term cultivation of primary porcine and human hepatocytes. Biomol Eng 2007;24(1):59–69. https://doi.org/10.1016/j.bioeng.2006.05.018.
  • [55] Timpl R, Rohde H, Robey PG, Rennard SI, Foidart JM, Martin GR. Laminin-A glycoprotein from basement membranes. J Biol Chem 1979;254(19):9933–7.
  • [56] Watanabe M, Zemack H, Johansson H, Hagbard L, Jorns C, Li M, et al. Maintenance of hepatic functions in primary human hepatocytes cultured on xeno-free and chemical defined human recombinant Laminins. PLoS One 2016;11(9): e0161383. doi: 10.1371/journal.pone.0161383.
  • [57] Ben-Ze’ev A, Robinson GS, Bucher NL, Farmer SR. Cell-cell and cell-matrix interactions differentially regulate the expression of hepatic and cytoskeletal genes in primary cultures of rat hepatocytes. Proc Natl Acad Sci U S A 1988;85(7):2161–5. https://doi.org/10.1073/pnas.85.7.2161.
  • [58] Gross-Steinmeyer K, Stapleton PL, Tracy JH, Bammler TK, Lehman T, Strom SC, et al. Influence of Matrigel-overlay on constitutive and inducible expression of nine genes encoding drug-metabolizing enzymes in primary human hepatocytes. Xenobiotica 2005;35(5):419–38. https://doi.org/10.1080/00498250500137427.
  • [59] Hughes CS, Postovit LM, Lajoie GA. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 2010;10(9):1886–90. https://doi.org/10.1002/pmic.200900758.
  • [60] Kim M, Lee JY, Jones CN, Revzin A, Tae G. Heparin-based hydrogel as a matrix for encapsulation and cultivation of primary hepatocytes. Biomaterials 2010;31(13):3596–603. https://doi.org/10.1016/j.biomaterials.2010.01.068.
  • [61] Ye S, Boeter JWB, Penning LC, Spee B, Schneeberger K. Hydrogels for liver tissue engineering. Bioeng 2019;6(3):59. doi: 10.3390/bioengineering6030059.
  • [62] Mirdamadi ES, Kalhori D, Zakeri N, Azarpira N, Solati-Hashjin M. Liver tissue engineering as an emerging alternative for liver disease treatment. Tissue Eng Part B Rev 2020;26(2):145–63. https://doi.org/10.1089/ten.teb.2019.0233.
  • [63] Sellaro TL, Ranade A, Faulk DM, McCabe GP, Dorko K, Badylak SF, et al. Maintenance of human hepatocyte function in vitro by liver-derived extracellular matrix gels. Tissue Eng Part A 2010;16(3):1075–82. https://doi.org/10.1089/ten.tea.2008.0587.
  • [64] Lauschke VM, Shafagh RZ, Hendriks DFG, Ingelman-Sundberg M. 3D primary hepatocyte culture systems for analyses of liver diseases, drug metabolism, and toxicity: emerging culture paradigms and applications. Biotechnol J 2019;14(7):1800347. https://doi.org/10.1002/biot.v14.710.1002/biot.201800347.
  • [65] Prior N, Inacio P, Huch M. Liver organoids: from basic research to therapeutic applications. Gut 2019;68(12):2228–37. https://doi.org/10.1136/gutjnl-2019-319256.
  • [66] Dash A, Simmers MB, Deering TG, Berry DJ, Feaver RE, Hastings NE, et al. Hemodynamic flow improves rat hepatocyte morphology, function, and metabolic activity in vitro. Am J Physiol Cell Physiol 2013;304(11):C1053–63. https://doi.org/10.1152/ajpcell.00331.2012.
  • [67] Hegde M, Jindal R, Bhushan A, Bale SS, McCarty WJ, Golberg I, et al. Dynamic interplay of flow and collagen stabilizes primary hepatocytes culture in a microfluidic platform. Lab Chip 2014;14(12):2033–9. https://doi.org/10.1039/C4LC00071D.
  • [68] Eghbali H, Nava MM, Mohebbi-Kalhori D, Raimondi MT. Hollow fiber bioreactor technology for tissue engineering applications. Int J Artif Organs 2016;39(1):1–15. https://doi.org/10.5301/ijao.5000466.
  • [69] Pizarro MD, Mamprin ME, Daurelio LD, Rodriguez JV, Mediavilla MG. Experimental bio-artificial liver: importance of the architectural design on ammonia detoxification performance. World J Hepatol 2018;10(10):719–30. https://doi.org/10.4254/wjh.v10.i10.719.
  • [70] Carreau A, El H-R, Matejuk A, Grillon C, Kieda C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med 2011;15(6):1239–53. https://doi.org/10.1111/j.1582-4934.2011.01258.x.
  • [71] Guo R, Xu X, Lu Y, Xie X. Physiological oxygen tension reduces hepatocyte dedifferentiation in in vitro culture. Sci Rep 2017;7:1–9. https://doi.org/10.1038/s41598-017-06433-3.
  • [72] Bachmann A, Moll M, Gottwald E, Nies C, Zantl R,Wagner H, et al. 3D cultivation techniques for primary human hepatocytes. Microarrays (Basel) 2015;4(1):64–83. https://doi.org/10.3390/microarrays4010064.
  • [73] Palakkan AA, Hay DC, PR AK, TV K, Ross JA. Liver tissue engineering and cell sources: issues and challenges. Liver Int 2013;33(5):666–76. https://doi.org/10.1111/liv.12134.
  • [74] Kelly JH, Koussayer T, He D-e, Chong MG, Shang TA, Whisennand HH, et al. Assessment of an extracorporeal liver assist device in anhepatic dogs. Artif Organs 1992;16(4):418–22. doi: 10.1111/j.1525-1594.1992.tb00543.x.
  • [75] Nyberg SL, Remmel RP, Mann HJ, Peshwa MV, Hu WS, Cerra FB. Primary hepatocytes outperform Hep G2 cells as the source of biotransformation functions in a bioartificial liver. Ann Surg 1994;220(1):59–67.
  • [76] van Wenum M, Adam AAA, Hakvoort TBM, Hendriks EJ, Shevchenko V, van Gulik TM, et al. Selecting cells for bioartificial liver devices and the importance of a 3D culture environment: a functional comparison between the HepaRG and C3A cell lines. Int J Biol Sci 2016;12(8):964–78. https://doi.org/10.7150/ijbs.15165.
  • [77] Malhi H, Irani AN, Gagandeep S, Gupta S. Isolation of human progenitor liver epithelial cells with extensive replication capacity and differentiation into mature hepatocytes. J Cell Sci 2002;115(Pt 13):2679–88.
  • [78] Stock P, Brückner S, Ebensing S, Hempel M, Dollinger MM, Christ B. The generation of hepatocytes from mesenchymal stem cells and engraftment into murine liver. Nat Protoc 2010;5(4):617–27. https://doi.org/10.1038/nprot.2010.7.
  • [79] Huang P, He Z, Ji S, Sun H, Xiang D, Liu C, et al. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 2011;475(7356):386–9. https://doi.org/10.1038/nature10116.
  • [80] Lee CA, Sinha S, Fitzpatrick E, Dhawan A. Hepatocyte transplantation and advancements in alternative cell sources for liver-based regenerative medicine. J Mol Med 2012;96(6):469–81. https://doi.org/10.1007/s00109-018-1638-5.
  • [81] Donato MT, Castell JV, Gómez-Lechón MJ. Characterization of drug metabolizing activities in pig hepatocytes for use in bioartificial liver devices: Comparison with other hepatic cellular models. J Hepatol 1999;31(3):542–9. https://doi.org/10.1016/S0168-8278(99)80049-X.
  • [82] Nicolas C, Von WJ, Wang Y, Nyberg SL. Cell therapy in chronic liver disease hhs public access. Curr Opin Gastroenterol 2016;32(3):189–94. https://doi.org/10.1097/MOG.0000000000000262.
  • [83] Mavri-Damelin D, Damelin LH, Eaton S, Rees M, Selden C, Hodgson HJF. Cells for bioartificial liver devices: the human hepatoma-derived cell line C3A produces urea but does not detoxify ammonia. Biotechnol Bioeng 2008;99(3):644–51. https://doi.org/10.1002/(ISSN)1097-029010.1002/bit.v99:310.1002/bit.21599.
  • [84] Pluta KD, Samluk A, Wencel A, Zakrzewska KE, Gora M, Burzynska B, et al. Genetically modified C3A cells with restored urea cycle for improved bioartificial liver. Biocybern Biomed Eng 2020;40(1):378–87. https://doi.org/10.1016/j.bbe.2019.12.006.
  • [85] Han S, Wei S, Wang X, Han Xu, Zhang M, Su M, et al. Enhanced intrinsic CYP3A4 activity in human hepatic C3A cells with optically controlled CRISPR/dCas9 activator complex. Integr Biol (United Kingdom) 2018;10(12):780–90. https://doi.org/10.1039/C8IB00109J.
  • [86] Moedas MF, Adam AAA, Farelo MA, IJlst L, Chamuleau RAFM, Hoekstra R, et al. Advances in methods for characterization of hepatic urea cycle enzymatic activity in HepaRG cells using UPLC-MS/MS. Anal Biochem 2017;535:47–55. https://doi.org/10.1016/j.ab.2017.07.025.
  • [87] Marion M-J, Hantz O, Durantel D. The HepaRG cell line: biological properties and relevance as a tool for cell biology, drug metabolism, and virology studies. Methods Mol Biol 2010;640:261–72. https://doi.org/10.1007/978-1-60761-688-7_13.
  • [88] Ramboer E, Vanhaecke T, Rogiers V, Vinken M. Immortalized human hepatic cell lines for in vitro testing and research purposes. Methods Mol Biol 2015;1250:53–76. https://doi.org/10.1007/978-1-4939-2074-7_4.
  • [89] Lee SY, Kim HJ, Choi D. Cell sources, liver support systems and liver tissue engineering: Alternatives to liver transplantation. Int J Stem Cells 2015;8(1):36–47. https://doi.org/10.15283/ijsc.2015.8.1.36.
  • [90] Khuu DN, Scheers I, Ehnert S, Jazouli N, Nyabi O, Buc-Calderon P, et al. In vitro differentiated adult human liver progenitor cells display mature hepatic metabolic functions: a potential tool for in vitro pharmacotoxicological testing. Cell Transplant 2011;20(2):287–302. https://doi.org/10.3727/096368910X516655.
  • [91] Tanimizu N, Mitaka T. Re-evaluation of liver stem/progenitor cells. Organogenesis 2014;10(2):208–15. doi: 10.4161/org.27591.
  • [92] Kajiwara M, Aoi T, Okita K, Takahashi R, Inoue H, Takayama N, et al. Donor-dependent variations in hepatic differentiation from human-induced pluripotent stem cells. Proc Natl Acad Sci U S A 2012;109(31):12538–43. https://doi.org/10.1073/pnas.1209979109.
  • [93] Song Z, Cai J, Liu Y, Zhao D, Yong J, Duo S, et al. Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Res 2009;19(11):1233–42. https://doi.org/10.1038/cr.2009.107.
  • [94] Yu Y, Liu H, Ikeda Y, Amiot BP, Rinaldo P, Duncan SA, et al. Hepatocyte-like cells differentiated from human induced pluripotent stem cells: Relevance to cellular therapies. Stem Cell Res 2012;9(3):196–207. https://doi.org/10.1016/j.scr.2012.06.004.
  • [95] Ren S, Irudayam JI, Contreas D, Sareen D. Bioartificial liver device based on induced pluripotent stem cell-derived hepatocytes. J Stem Cell Res Ther 2015;5:263. https://doi.org/10.4172/2157-7633.1000263.
  • [96] Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 2013;499 (7459):481–4. https://doi.org/10.1038/nature12271.
  • [97] Hay DC, Zhao D, Fletcher J, Hewitt ZA, McLean D, Urruticoechea-Uriguen A, et al. Efficient differentiation of hepatocytes from human embryonic stem cells exhibiting markers recapitulating liver development in vivo. Stem Cells 2008;26(4):894–902. https://doi.org/10.1634/stemcells.2007-0718.
  • [98] Payne CM, Samuel K, Pryde A, King J, Brownstein D, Schrader J, et al. Persistence of functional hepatocyte-like cells in immune-compromised mice. Liver Int 2011;31(2):254–62. doi: 10.1111/j.1478-3231.2010.02414.x.
  • [99] Stock P, Staege MS, Müller LP, Sgodda M, Völker A, Volkmer I, et al. Hepatocytes derived from adult stem cells. Transplant Proc 2008;40(2):620–3. https://doi.org/10.1016/j.transproceed.2008.01.058.
  • [100] Hu C, Li L. In vitro culture of isolated primary hepatocytes and stem cell-derived hepatocyte-like cells for liver regeneration. Protein Cell 2015;6(8):562–74. https://doi.org/10.1007/s13238-015-0180-2.
  • [101] Coronado RE, Somaraki-Cormier M, Ong JL, Halff GA. Hepatocyte-like cells derived from human amniotic epithelial, bone marrow, and adipose stromal cells display enhanced functionality when cultured on decellularized liver substrate. Stem Cell Res 2019;38:101471. https://doi.org/10.1016/j.scr.2019.101471.
  • [102] Huang P, Zhang L, Gao Y, He Z, Yao D, Wu Z, et al. Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell 2014;14(3):370–84. https://doi.org/10.1016/j.stem.2014.01.003.
  • [103] Ballester M, Bolonio M, Santamaria R, Castell JV, Ribes-Koninckx C, Bort R. Direct conversion of human fibroblast to hepatocytes using a single inducible polycistronic vector. Stem Cell Res Ther 2019;10(1):317. https://doi.org/10.1186/s13287-019-1416-5.
  • [104] Matas A, Sutherland D, Steffes M, Mauer S, Sowe A, Simmons R, et al. Hepatocellular transplantation for metabolic deficiencies: decrease of plasms bilirubin in Gunn rats. Science (80-) 1976;192(4242):892–4. https://doi.org/10.1126/science:818706.
  • [105] Mito M, Kusano M, Kawaura Y. Hepatocyte transplantation in man. Transplant Proc 1992;24(6):3052–3.
  • [106] Iansante V, Mitry RR, Filippi C, Fitzpatrick E, Dhawan A. Human hepatocyte transplantation for liver disease: current status and future perspectives. Pediatr Res 2018;83(1–2):232–40. https://doi.org/10.1038/pr.2017.284.
  • [107] Ibars EP, Cortes M, Tolosa L, Gómez-Lechón MJ, López S, Castell JV, et al. Hepatocyte transplantation program: lessons learned and future strategies. World J Gastroenterol 2016;22(2):874–86. https://doi.org/10.3748/wjg.v22.i2.874.
  • [108] Stéphenne X, Najimi M, Ngoc DK, Smets F, Hue L, Guigas B, et al. Cryopreservation of human hepatocytes alters the mitochondrial respiratory chain complex 1. Cell Transplant 2007;16(4):409–19. https://doi.org/10.3727/000000007783464821.
  • [109] Dhawan A, Puppi J, Hughes RD, Mitry RR. Human hepatocyte transplantation: current experience and future challenges. Nat Rev Gastroenterol Hepatol 2010;7(5):288–98. https://doi.org/10.1038/nrgastro.2010.44.
  • [110] Azoulay D, Samuel D, Castaing D, Adam R, Adams D, Said G, et al. Domino liver transplants for metabolic disorders: experience with familial amyloidotic polyneuropathy. J Am Coll Surg 1999;189(6):584–93. https://doi.org/10.1016/S1072-7515(99)00208-2.
  • [111] Hughes RD, Mitry RR, Dhawan A, Lehec SC, Girlanda R, Rela M, et al. Isolation of hepatocytes from livers from nonheart-beating donors for cell transplantation. Liver Transplant 2006;12(5):713–7. https://doi.org/10.1002/(ISSN)1527-647310.1002/lt.v12:510.1002/lt.20732.
  • [112] Miki T. Clinical hepatocyte transplantation. Adv Res Gastroenterol Hepatol 2018;9(5):75–80. https://doi.org/10.19080/argh.2018.09.555771.
  • [113] Zakrzewska KE, Samluk A, Wencel A, Dudek K, Pijanowska DG, Pluta KD, et al. Liver tissue fragments obtained from males are the most promising source of human hepatocytes for cell-based therapies – flow cytometric analysis of albumin expression. PLoS ONE 2017;12(8):e0182846. https://doi.org/10.1371/journal.pone.0182846.
  • [114] Hughes RD, Mitry R, Dhawan A. Hepatocyte transplantation for metabolic liver disease: UK experience. J R Soc Med 2005;98(8):341–5. https://doi.org/10.1258/jrsm.98.8.341.
  • [115] Gupta S, Bhargava KK, Novikoff PM. Mechanisms of cell engraftment during liver repopulation with hepatocyte transplantation. Semin Liver Dis 1999;19(1):15–26. https://doi.org/10.1055/s-2007-1007094.
  • [116] Jitraruch S, Dhawan A, Hughes RD, Filippi C, Soong D, Philippeos C, et al. Alginate microencapsulated hepatocytes optimised for transplantation in acute liver failure. PLoS ONE 2014;9(12):e113609. https://doi.org/10.1371/journal.pone.0113609.
  • [117] Fox IJ. Hepatocyte transplantation. Gastroenterol Hepatol (NY) 2014;10(9):594–6.
  • [118] Podoll AS, Degolovine A, Finkel KW. Liver support systems-a review. ASAIO J 2012;58(5):443–9. https://doi.org/10.1097/MAT.0b013e31825f3446.
  • [119] Struecker B, Raschzok N, Sauer IM. Liver support strategies: cutting-edge technologies. Nat Rev Gastroenterol Hepatol 2014;11(3):166–76. https://doi.org/10.1038/nrgastro.2013.204.
  • [120] Laleman W, Wilmer A, Evenepoel P, Verslype C, Fevery J, Nevens F. Review article: non-biological liver support in liver failure. Aliment Pharmacol Ther 2006;23(3):351–63. https://doi.org/10.1111/apt.2006.23.issue-310.1111/j.1365-2036.2006.02765.x.
  • [121] Carpentier B, Gautier A, Legallais C. Artificial and bioartificial liver devices: Present and future. Gut 2009;58(12):1690–702. https://doi.org/10.1136/gut.2008.175380.
  • [122] Gilg S, Sparrelid E, Saraste L, Nowak G, Wahlin S, Strömberg C, et al. The molecular adsorbent recirculating system in posthepatectomy liver failure: results from a prospective phase I study. Hepatol Commun 2018;2(4):445–54. https://doi.org/10.1002/hep4.v2.410.1002/hep4.1167.
  • [123] Piechota M, Piechota A, Misztal M, Bernas S, Pietraszek-Grzywaczewska I. An evaluation of the usefulness of extracorporeal liver support techniques in patients with severe liver dysfunction. Arch Med Sci 2019;15(1):99–112. https://doi.org/10.5114/aoms.2017.67998.
  • [124] Rozga J, Umehara Y, Trofimenko A, Sadahiro T, Demetriou AA. A novel plasma filtration therapy for hepatic failure: preclinical studies. Ther Apher Dial 2006;10(2):138–44. https://doi.org/10.1111/tap.2006.10.issue-210.1111/j.1744-9987.2006.00355.x.
  • [125] Bañares R, Nevens F, Larsen FS, Jalan R, Albillos A, Dollinger M, et al. Extracorporeal albumin dialysis with the molecular adsorbent recirculating system in acute-on-chronic liver failure: the RELIEF trial. Hepatology 2013;57(3):1153–62. https://doi.org/10.1002/hep.26185.
  • [126] Kribben A, Gerken G, Haag S, Herget–Rosenthal S, Treichel U, Betz C, et al. Effects of fractionated plasma separation and adsorption on survival in patients with acute-on-chronic liver failure. Gastroenterology 2012;142(4):782–789.e3. https://doi.org/10.1053/j.gastro.2011.12.056.
  • [127] Pless G. Artificial and bioartificial liver support. Organogenesis 2007;3(1):20–4. https://doi.org/10.4161/org.3.1.3635.
  • [128] Tsipotis E, Shuja A, Jaber BL. Albumin dialysis for liver failure: a systematic review. Adv Chronic Kidney Dis 2015;22(5):382–90. https://doi.org/10.1053/j.ackd.2015.05.004.
  • [129] Wu C, Zhu Y, Yu M. Serum metabonomics analysis of liver failure treated by nonbioartificial liver support systems. Can J Gastroenterol Hepatol 2018;2018:1–10. https://doi.org/10.1155/2018/2586052.
  • [130] Rozga J, Malkowski P. Artificial liver support: Quo Vadis? Ann Transplant 2010;15(4):92–101.
  • [131] Chamuleau RAFM. Artificial liver support in the third millennium. Artif Cells Blood Substit Immobil Biotechnol 2003;31(2):117–26. https://doi.org/10.1081/BIO-120020168.
  • [132] Rozga J. Liver support technology – an update. Xenotransplantation 2006;13(5):380–9. https://doi.org/10.1111/j.1399-3089.2006.00323.x.
  • [133] Sauer IM, Kardassis D, Zeillinger K, Pascher A, Gruenwald A, Pless G, et al. Clinical extracorporeal hybrid liver support – Phase I study with primary porcine liver cells. Xenotransplantation 2003;10(5):460–9. doi: 10.1034/j.1399-3089.2003.00062.x.
  • [134] Demetriou AA, Brown RS, Busuttil RW, Fair J, McGuire BM, Rosenthal P, et al. Prospective, Randomized, Multicenter, Controlled Trial of a Bioartificial Liver in Treating Acute Liver Failure. Ann Surg 2004;239(5):660–70. doi: 10.1097/01.sla.0000124298.74199.e5.
  • [135] Thompson J, Jones N, Al-Khafaji A, Malik S, Reich D, Munoz S, et al. Extracorporeal cellular therapy (ELAD) in severe alcoholic hepatitis: a multinational, prospective, controlled, randomized trial. Liver Transpl 2018;24(3):380–93. https://doi.org/10.1002/lt.v24.310.1002/lt.24986.
  • [136] Allen JW, Hassanein T, Bhatia SN. Advances in bioartificial liver devices. Hepatology 2001;34(3):447–55. https://doi.org/10.1053/jhep.2001.26753.
  • [137] Yarmush ML, Dunn JCY, Tompkins RG. Assessment of artificial liver support technology. Cell Transplant 1992;1(5):323–41. https://doi.org/10.1177/096368979200100501.
  • [138] Morsiani E, Brogli M, Galavotti D, Pazzi P, Puviani AC, Azzena GF. Biologic liver support: optimal cell source and mass. Int J Artif Organs 2002;25(10):985–93. https://doi.org/10.1177/039139880202501013.
  • [139] Rozga J, Williams F, Ro M-S, Neuzil DF, Giorgio TD, Backfisch G, et al. Development of a bioartificial liver: properties and function of a hollow-fiber module inoculated with liver cells. Hepatology 1993;17(2):258–65. https://doi.org/10.1002/hep.1840170216.
  • [140] Gripon P, Rumin S, Urban S, Le Seyec J, Glaise D, Cannie I, et al. Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci U S A 2002;99(24):15655–60. https://doi.org/10.1073/pnas.232137699.
  • [141] Knowles B, Howe C, Aden D. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science (80-) 1980;209 (4455):497–9. https://doi.org/10.1126/science.6248960.
  • [142] Sussman NL, Chong MG, Koussayer T, He D-E, Shang TA, Whisennand HH, et al. Reversal of fulminant hepatic failure using an extracorporeal liver assist device. Hepatology 1992;16(1):60–5. https://doi.org/10.1002/hep.1840160112.
  • [143] Demetriou AA, Whiting J, Levenson SM, Chowdhury NR, Schechner R, Michalski S, et al. New method of hepatocyte transplantation and extracorporeal liver support. Ann Surg 1986;204(3):259–71. doi: 10.1097/00000658-198609000-00005.
  • [144] Mullon C, Pitkin Z. The HepatAssist_ Bioartificial Liver Support System: Clinical study and pig hepatocyte process. Expert Opin Investig Drugs 1999;8(3):229–35. https://doi.org/10.1517/13543784.8.3.229.
  • [145] Sussman NL, Gislason GT, Conlin CA, Kelly JH. The hepatix extracorporeal liver assist device: initial clinical experience. Artif Organs 1994;18(5):390–6. https://doi.org/10.1111/j.1525-1594.1994.tb02221.x.
  • [146] Gislason GT, Lobdell DD, Kelly JH, Sussman NL. A treatment system for implementing an extracorporeal liver assist device. Artif Organs 1994;18(5):385–9. https://doi.org/10.1111/j.1525-1594.1994.tb02220.x.
  • [147] Ellis AJ, Hughes RD, Wendon JA, Dunne J, Langley PG, Kelly JH, et al. Pilot-controlled trial of the extracorporeal liver assist device in acute liver failure. Hepatology 1996;24(6):1446–51. https://doi.org/10.1053/jhep.1996.v24.pm0008938179.
  • [148] Teperman L. Bilirubin improvement correlates with 90-day survival with use of the ELAD_ system in a randomized, controlled study of subjects with acute alcoholic hepatitis or acute decompensation of cirrhosis. Proc Am J Transpl 2013.
  • [149] Sauer IM, Gerlach JC. Modular extracorporeal liver support. Artif Organs 2002;26(8):703–6. https://doi.org/10.1046/j.1525-1594.2002.06931_1.x.
  • [150] Gerlach JC, Encke J, Hole O, Müller C, Ryan CJ, Neuhaus P. Bioreactor for a larger scale hepatocyte in vitro perfusion. Transplantation 1994;58(9):984–8. https://doi.org/10.1097/00007890-199411150-00002.
  • [151] Sauer IM, Neuhaus P, Gerlach JC. Concept for modular extracorporeal liver support for the treatment of acute hepatic failure. Metab Brain Dis 2002;17(4):477–84. https://doi.org/10.1023/A:1021938708670.
  • [152] Flendrig LM, See JW, George GAJ, Steenbeek A, Karlsen OT, Bovbe WMMJ, et al. In Vitro Evaluation of a Novel Bioreacotr Based on an Integral Oxygenator and a Spirally Wound Nonwoven Polyester Matrix For Hepatocyte Culture as Small Aggregates. J Hepatol 1997;26(6):1379–92. doi: 10.1016/s0168-8278(97)80475-8.
  • [153] Van De Kerkhove M-P, Di Florio E, Scuderi V, Mancini A, Belli A, Bracco A, et al. Phase I clinical trial with the AMC-bioartificial liver. Int J Artif Organs 2002;25(10):950–9. https://doi.org/10.1177/039139880202501009.
  • [154] Van De Kerkhove MP, Poyck PPC, Deurholt T, Hoekstra R, Chamuleau RAFM, Van Gulik TM. Liver support therapy: an overview of the AMC-bioartificial liver research. Dig Surg 2005;22(4):254–64. https://doi.org/10.1159/000088055.
  • [155] Nibourg GAA, Chamuleau RAFM, van der Hoeven TV, Maas MAW, Ruiter AFC, Lamers WH, et al. Liver progenitor cell line HepaRG differentiated in a bioartificial liver effectively supplies liver support to rats with acute liver failure. PLoS ONE 2012;7(6):e38778. https://doi.org/10.1371/journal.pone.0038778.
  • [156] Nibourg GAA, Chamuleau RAFM, Van Gulik TM, Hoekstra R. Proliferative human cell sources applied as biocomponent in bioartificial livers: a review. Expert Opin Biol Ther 2012;12(7):905–21. https://doi.org/10.1517/14712598.2012.685714.
  • [157] Feng L, He G, Cai L, Fu C, Li Y,Weng J, et al. Artificial liver and renal support system for cynomolgus monkeys with surgery-induced acute renal failure: a preclinical study. Biomed Res Int 2018;2018:1–10. https://doi.org/10.1155/2018/7456898.
  • [158] He G-L, Feng L, Cai L, Zhou C-J, Cheng Y, Jiang Z-S, et al. Artificial liver support in pigs with acetaminophen-induced acute liver failure. World J Gastroenterol 2017;23(18):3262. https://doi.org/10.3748/wjg.v23.i18.3262.
  • [159] Li Yi, Wu Q, Wang Y, Weng C, He Y, Gao M, et al. Novel spheroid reservoir bioartificial liver improves survival of nonhuman primates in a toxin-induced model of acute liver failure. Theranostics 2018;8(20):5562–74. https://doi.org/10.7150/thno.26540.
  • [160] Lee J-H, Lee D-H, Lee S, Kwon CHD, Ryu J-N, Noh J-K, et al. Functional evaluation of a bioartificial liver support system using immobilized hepatocyte spheroids in a porcine model of acute liver failure. Sci Rep 2017;7(1). https://doi.org/10.1038/s41598-017-03424-2.
  • [161] Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials 2011;32(12):3233–43. https://doi.org/10.1016/j.biomaterials.2011.01.057.
  • [162] Lee JS, Shin J, Park H-M, Kim Y-G, Kim B-G, Oh J-W, et al. Liver extracellular matrix providing dual functions of two-dimensional substrate coating and three-dimensional injectable hydrogel platform for liver tissue engineering. Biomacromolecules 2014;15(1):206–18. https://doi.org/10.1021/bm4015039.
  • [163] Heath DE. A review of decellularized extracellular matrix biomaterials for regenerative engineering applications. Regen Eng Transl Med 2019;5(2):155–66. https://doi.org/10.1007/s40883-018-0080-0.
  • [164] Lang R, Stern MM, Smith L, Liu Y, Bharadwaj S, Liu G, et al. Three-dimensional culture of hepatocytes on porcine liver tissue-derived extracellular matrix. Biomaterials 2011;32(29):7042–52. https://doi.org/10.1016/j.biomaterials.2011.06.005.
  • [165] Soto-Gutierrez A, Zhang Li, Medberry C, Fukumitsu K, Faulk D, Jiang H, et al. A whole-organ regenerative medicine approach for liver replacement. Tissue Eng Part C Methods 2011;17(6):677–86. https://doi.org/10.1089/ten.tec.2010.0698.
  • [166] Keane TJ, Swinehart IT, Badylak SF. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods 2015;84:25–34. https://doi.org/10.1016/j.ymeth.2015.03.005.
  • [167] Loneker AE, Faulk DM, Hussey GS, D’Amore A, Badylak SF. Solubilized liver extracellular matrix maintains primary rat hepatocyte phenotype in-vitro. J Biomed Mater Res A 2016;104(4):957–65. https://doi.org/10.1002/jbma.v104.410.1002/jbm.a.35636.
  • [168] Sabetkish S, Kajbafzadeh A-M, Sabetkish N, Khorramirouz R, Akbarzadeh A, Seyedian SL, et al. Whole-organ tissue engineering: Decellularization and recellularization of three-dimensional matrix liver scaffolds. J Biomed Mater Res Part A 2015;103(4):1498–508. https://doi.org/10.1002/jbm.a.35291.
  • [169] Baptista PM, Siddiqui MM, Lozier G, Rodriguez SR, Atala A, Soker S. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 2011;53(2):604–17. https://doi.org/10.1002/hep.24067.
  • [170] Lee H, Han W, Kim H, Ha D-H, Jang J, Kim BS, et al. Development of liver decellularized extracellular matrix bioink for three-dimensional cell printing-based liver tissue engineering. Biomacromolecules 2017;18(4):1229–37. https://doi.org/10.1021/acs.biomac.6b01908.
  • [171] Shimoda H, Yagi H, Higashi H, Tajima K, Kuroda K, Abe Y, et al. Decellularized liver scaffolds promote liver regeneration after partial hepatectomy. Sci Rep 2019;9(1). https://doi.org/10.1038/s41598-019-48948-x.
  • [172] Mazza G, Rombouts K, Rennie Hall A, Urbani L, Vinh Luong Tu, Al-Akkad W, et al. Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation. Sci Rep 2015;5(1). https://doi.org/10.1038/srep13079.
  • [173] Lin P, Chan WCW, Badylak SF, Bhatia SN. Assessing porcine liver-derived biomatrix for hepatic tissue engineering. Tissue Eng 2004;10(7–8):1046–53. https://doi.org/10.1089/ten.2004.10.1046.
  • [174] Munaz A, Vadivelu RK, St. John J, Barton M, Kamble H, Nguyen N-T. Three-dimensional printing of biological matters. J Sci Adv Mater Devices 2016;1(1):1–17. https://doi.org/10.1016/j.jsamd.2016.04.001.
  • [175] Hull CW. Apparatus for Production of Three-Dimensonal Objects By Stereo Thography. Pat US4575330A 1984.
  • [176] Kryou C, Leva V, Chatzipetrou M, Zergioti I. Bioprinting for Liver Transplantation. Bioeng 2019;6(4):95. doi: 10.3390/bioengineering6040095.
  • [177] Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M. 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioact Mater 2018;3(2):144–56. https://doi.org/10.1016/j.bioactmat.2017.11.008.
  • [178] Ten G-B. Chemical Innovations ThatWill Change OurWorld: IUPAC identifies emerging technologies in Chemistry with potential to make our planet more sustainable. Chem Int 2019;41(2):12–7. https://doi.org/10.1515/ci-2019-0203.
  • [179] Bohandy J, Kim BF, Adrian FJ. Metal deposition from a supported metal film using an excimer laser. J Appl Phys 1986;60(4):1538–9. https://doi.org/10.1063/1.337287.
  • [180] Guillemot F, Souquet A, Catros S, Guillotin B. Laser-assisted cell printing: Principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine (Lond) 2010;5(3):507–15. https://doi.org/10.2217/nnm.10.14.
  • [181] Zhang X, Zhang Y. Tissue engineering applications of three-dimensional bioprinting. Cell Biochem Biophys 2015;72(3):777–82. https://doi.org/10.1007/s12013-015-0531-x.
  • [182] Gudapati H, Dey M, Ozbolat I. A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials 2016;102:20–42. https://doi.org/10.1016/j.biomaterials.2016.06.012.
  • [183] Phillippi JA, Miller E, Weiss L, Huard J, Waggoner A, Campbell P. Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscleand bone-like subpopulations. Stem Cells 2008;26(1):127–34. https://doi.org/10.1634/stemcells.2007-0520.
  • [184] Shi XL, Zhang Y, Chu XH, Han B, Gu JY, Xiao JQ, et al. Evaluation of a novel hybrid bioartificial liver based on a multi-layer flat-plate bioreactor. World J Gastroenterol 2012;18(28):3752–60. https://doi.org/10.3748/wjg.v18. i28.3752.
  • [185] Griffith LG, Wu B, Cima MJ, Powers MJ, Chaignaud B, Vacanti JP. In Vitro organogenesis of liver tissue. Ann N Y Acad Sci 1997;831(1):382–97. https://doi.org/10.1111/j.1749-6632.1997.tb52212.x.
  • [186] Chang R, Nam J, Sun W. Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng Part A 2008;14(1):41–8. https://doi.org/10.1089/ten.a.2007.0004.
  • [187] Mironov V, Kasyanov V, Markwald RR. Organ printing: from bioprinter to organ biofabrication line. Curr Opin Biotechnol 2011;22(5):667–73. https://doi.org/10.1016/j.copbio.2011.02.006.
  • [188] Faulkner-Jones A, Greenhough S, A King J, Gardner J, Courtney A, Shu W. Development of a valve-based cell printer for the formation of human embryonic stem cell spheroid aggregates. Biofabrication 2013;5(1):015013. doi: 10.1088/1758-5082/5/1/015013.
  • [189] Mobaraki M, Ghaffari M, Yazdanpanah A, Luo Y, Mills DK. Bioinks and bioprinting: a focused review. Bioprinting 2020;18:e00080. https://doi.org/10.1016/j.bprint.2020.e00080.
  • [190] Chimene D, Lennox KK, Kaunas RR, Gaharwar AK. Advanced bioinks for 3D printing: a materials science perspective. Ann Biomed Eng 2016;44(6):2090–102. https://doi.org/10.1007/s10439-016-1638-y.
  • [191] Jakab K, Norotte C, Marga F, Murphy K, Vunjak-Novakovic G, Forgacs G. Tissue engineering by self-assembly and bioprinting of living cells. Biofabrication 2010;2(2):022001. https://doi.org/10.1088/1758-5082/2/2/022001.
  • [192] Chung JHY, Naficy S, Yue Z, Kapsa R, Quigley A, Moulton SE, et al. Bio-ink properties and printability for extrusion printing living cells. Biomater Sci 2013;1(7):763. https://doi.org/10.1039/c3bm00012e.
  • [193] Kesti M, Mu¨ ller M, Becher J, Schnabelrauch M, D’Este M, Eglin D, et al. A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation. Acta Biomater 2015;11:162–72. https://doi.org/10.1016/j.actbio.2014.09.033.
  • [194] Chimene D, Alge DL, Gaharwar AK. Two-dimensional nanomaterials for biomedical applications: emerging trends and future prospects. Adv Mater 2015;27(45):7261–84. https://doi.org/10.1002/adma.201502422.
  • [195] Jaiswal MK, Xavier JR, Carrow JK, Desai P, Alge D, Gaharwar AK. Mechanically stiff nanocomposite hydrogels at ultralow nanoparticle content. ACS Nano 2016;10(1):246–56. https://doi.org/10.1021/acsnano.5b0391810.1021/acsnano.5b03918.s001.
  • [196] Kerativitayanan P, Carrow JK, Gaharwar AK. Nanomaterials for Engineering Stem Cell Responses. Adv Healthc Mater 2015;4(11):1600–27. https://doi.org/10.1002/adhm.v4.1110.1002/adhm.201500272.
  • [197] Thakur T, Xavier JR, Cross L, Jaiswal MK, Mondragon E, Kaunas R, et al. Photocrosslinkable and elastomeric hydrogels for bone regeneration. J Biomed Mater Res A 2016;104(4):879–88. https://doi.org/10.1002/jbma.v104.410.1002/jbm.a.35621.
  • [198] Gaharwar AK, Peppas NA, Khademhosseini A. Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 2014;111(3):441–53. https://doi.org/10.1002/bit.25160.
  • [199] Gao G, Schilling AF, Yonezawa T, Wang J, Dai G, Cui X. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol J 2014;9(10):1304–11. https://doi.org/10.1002/biot.201400305.
  • [200] Demirtaş TT, Irmak G, Gümüşderelioğlu M. A bioprintable form of chitosan hydrogel for bone tissue engineering. Biofabrication 2017;9(3). https://doi.org/10.1088/1758-5090/aa7b1d 035003.
  • [201] Heo EY, Ko NR, Bae MS, Lee SJ, Choi B-J, Kim JH, et al. Novel 3D printed alginate–BFP1 hybrid scaffolds for enhanced bone regeneration. J Ind Eng Chem 2017;45:61–7. https://doi.org/10.1016/j.jiec.2016.09.003.
  • [202] Trombetta R, Inzana JA, Schwarz EM, Kates SL, Awad HA. 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann Biomed Eng 2017;45(1):23–44. https://doi.org/10.1007/s10439-016-1678-3.
  • [203] De Mori A, Peña Fernández M, Blunn G, Tozzi G, Roldo M. 3D printing and electrospinning of composite hydrogels for cartilage and bone tissue engineering. Polym 2018;10(3):285. https://doi.org/10.3390/polym10030285.
  • [204] Yang X, Lu Z, Wu H, Li W, Zheng L, Zhao J. Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Mater Sci Eng C Matter Biol Appl 2018;83:195–201. https://doi.org/10.1016/j.msec.2017.09.002.
  • [205] Kosik-Kozioł A, Costantini M, Bolek T, Szöke K, Barbetta A, Brinchmann J, et al. PLA short sub-micron fiber reinforcement of 3D bioprinted alginate constructs for cartilage regeneration. Biofabrication 2017;9(4):044105. https://doi.org/10.1088/1758-5090/aa90d7.
  • [206] Nguyen D, Hägg DA, Forsman A, Ekholm J, Nimkingratana P, Brantsing C, et al. Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink. Sci Rep 2017;7(1). https://doi.org/10.1038/s41598-017-00690-y.
  • [207] Beheshtizadeh N, Lotfibakhshaiesh N, Pazhouhnia Z, Hoseinpour M, Nafari M. A review of 3D bio-printing for bone and skin tissue engineering: a commercial approach. J Mater Sci 2020;55(9):3729–49. https://doi.org/10.1007/s10853-019-04259-0.
  • [208] Hakam MS, Imani R, Abolfathi N, Fakhrzadeh H, Sharifi AM. Evaluation of fibrin-gelatin hydrogel as biopaper for application in skin bioprinting: an in-vitro study. Biomed Mater Eng 2017;27(6):669–82. https://doi.org/10.3233/BME-161617.
  • [209] Wang X, Yan Y, Pan Y, Xiong Z, Liu H, Cheng J, et al. Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng 2006;12(1):83–90. https://doi.org/10.1089/ten.2006.12.83.
  • [210] Nguyen DG, Funk J, Robbins JB, Crogan-Grundy C, Presnell SC, Singer T, et al. Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro. PLoS ONE 2016;11(7):e0158674. https://doi.org/10.1371/journal.pone.0158674.
  • [211] Kim Y, Kang K, Jeong J, Paik SS, Kim JS, Park SA, et al. Three-dimensional (3D) printing of mouse primary hepatocytes to generate 3D hepatic structure. Ann Surg Treat Res 2017;92(2):67. https://doi.org/10.4174/astr.2017.92.2.67.
  • [212] Arai K, Yoshida T, Okabe M, Goto M, Mir TA, Soko C, et al. Fabrication of 3D-culture platform with sandwich architecture for preserving liver-specific functions of hepatocytes using 3D bioprinter. J Biomed Mater Res A 2017;105(6):1583–92. https://doi.org/10.1002/jbm.a.v105.610.1002/jbm.a.35905.
  • [213] Lewis PL, Green RM, Shah RN. 3D-printed gelatin scaffolds of differing pore geometry modulate hepatocyte function and gene expression. Acta Biomater 2018;69:63–70. https://doi.org/10.1016/j.actbio.2017.12.042.
  • [214] Schepers A, Li C, Chhabra A, Seney BT, Bhatia S. Engineering a perfusable 3D human liver platform from iPS cells. Lab Chip 2016;16(14):2644–53. https://doi.org/10.1039/C6LC00598E.
  • [215] Norona LM, Nguyen DG, Gerber DA, Presnell SC, LeCluyse EL. Editor’s highlight: modeling compound-induced fibrogenesis in vitro using three-dimensional bioprinted human liver tissues. Toxicol Sci 2016;154(2):354–67. https://doi.org/10.1093/toxsci/kfw169.
  • [216] Murphy K, Dorfman S, Smith N, Bauwens L, Sohn I, McDonald T, et al. Devices, Systems, and Methods for the Fabrication of Tissue. Pat US9149952B2 2012.
  • [217] Skardal A, Devarasetty M, Kang H-W, Mead I, Bishop C, Shupe T, et al. A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs. Acta Biomater 2015;25:24–34. https://doi.org/10.1016/j.actbio.2015.07.030.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b30b0e7-1275-4051-a242-593ea08d283a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.