
ECONTECHMOD. AN INTERNATIONAL QUARTERLY JOURNAL – 2018, Vol. 07, No. 3, 13 – 22 

 

 

Software architecture design of the information technology 

for real-time business process monitoring 
 

Anatoliy Batyuk and Volodymyr Voityshyn 

 

Automated Control Systems Department 

Lviv Polytechnic National University 

Lviv, Ukraine 

e-mail: abatyuk@gmail.com, voytyshyn@gmail.com 

 

Received August 26.2018: accepted October 20.2018 

 

 
Abstract. Having precise understanding of how 

business processes are performed in real-life is an 

important input for decision makers and consequently 

is a strong competitive advantage for an organization. 

In the constantly changing modern business 

environment it is crucial to provide that information as 

soon as possible, preferably in the real-time mode. In 

practice, such kind of tasks are usually resolved by 

means of Business Intelligence solutions implemented 

either from scratch or based upon customizable 

packages. Despite of the wide range currently available 

types of data visualizations, modern BI solutions still 

lacks features to represent data obtained from process-

aware systems, for example control flow charts. 

Current paper is devoted to the information technology 

for real-time business process monitoring. The 

represented solution is an extendable software which is 

based on the lambda architecture and a streaming 

process discovery technique. 

Keywords: information technology, process mining, 

streaming process discovery, lambda architecture, 

Heuristic Miner 

INTRODUCTION 

The main purpose of modern enterprise IT systems 

is to ensure automation of various kind of business 

processes. Sometimes processes are well structured and 

implemented by means of workflow management 

systems using specialized languages (like BPMN) for 

process flow definition; however, in most cases 

processes are executed under the circumstances when 

clear definition of their flows is quite difficult or even 

not practically possible. For example, this takes place 

when a process is implemented by means of a few 

separate integrated software systems, and flow of the 

process is very dependent on people’s decisions. This 

usually leads to quite complicated transitions among 

process steps with many branches and parallel 

executions. Nonetheless, monitoring of such kind of 

business processes using their “digital footprints” (i.e. 

real-life data generated by processes execution) is an 

important practical task which ensure representation of 

valuable insights for decision makers of how business 

operations are performed in real-life. Another 

challenge of modern enterprise software development 

is to supply necessary information as soon as possible 

so that the latest changes in business environment are 

considered, and relevant decisions are made by 

responsible people in time. Such kind of tasks are 

usually resolved by means of Business Intelligence 

solutions implemented either from scratch or upon 

customizable packages (e.g. Microsoft Power BI). 

Despite of the wide range of supported approaches to 

analyze and visualize data, in most cases those 

solutions do not consider process origination of the 

data, for example do not provide features of process 

flow charts visualization. 

Current paper is devoted to software architecture 

design of the implemented by the authors real-time 

business process monitoring (shortly RTBPM) 

information technology. The represented solution 

ensures visibility and traceability of the executed 

business operations displaying them in the process-

aware manner so that the end users can use the provided 

insights to make appropriate decisions in time. From 

technical implementation perspective the information 

technology is based on the lambda architecture [26]. 

The algorithmic part is built upon a streaming process 

discovery technique [11]. It is necessary to note that in 

the context of current paper “real-time” means a period 

of time (starting from occurring an event and its 

processing by means of RTBPM) during which the 

response of the information technology is relevant. An 

exact value of that period of time is not specified 

because in different practical applications the value can 

variate from a few seconds to even tens of minutes 

(further information about performance requirements 

can be found in section 3.2). 

It is worth to notice that current paper focuses on 

the real-time process monitoring functionality. So, the 

features which are typical for such kind of software 

products (e.g. security, logging, user management etc.) 

but not related to the main task, are out of scope of the 

article. 

The rest of the paper is structured as follows: the 

problem is stated in section 2; technical task (including 

mailto:abatyuk@gmail.com
mailto:voytyshyn@gmail.com


14              A. BATYUK, V. VOITYSHYN 
 

functional and non-functional requirements) is defined 

in section 3; section 4 is devoted to technical 

architecture of RTBPM; the process flow discovery 

method is described in section 5; concluding remarks 

are in the final section. 

 

CONTEXT AND PROBLEM STATEMENT 

RTBPM can be considered as a specialized type of 

a business intelligence (BI) solution that fulfills a gap 

which is typical for BI products – lack of process 

analytics features. Before starting describing the 

information technology itself it is important to outline 

in what context it is intended to be used. 

As a rule, a corporate IT ecosystem includes many 

separate software applications, for example, a customer 

relationship management, document management, 

human resource management, enterprise resource 

planning, and many others. Each of those systems is not 

by itself but is integrated with the rest of an ecosystem 

(discussing of enterprise software integration 

approaches is out of scope). Another common 

characteristic is that almost each system has a database 

(or even a few databases). To provide information 

about actual situation within the organization data from 

those applications is consolidated into a so-called data 

warehouse (for example, by means of extract-

transform-load or shortly ETL tools) and then 

consumed by a reporting tool which, in turns, visualizes 

the data in necessary perspectives (Fig. 1). It should be 

noted that the model on Fig. 1 is a simplified because 

in real-life a corporate IT ecosystem may include more 

than one data warehouse as well as master data 

management, business process management, enterprise 

service bus etc. 

A corporate IT ecosystem is usually aimed to 

automate certain amount of business processes. In a 

most common scenario those processes are 

implemented without explicit flow definition, and their 

execution involve more than one software product. An 

issue with that is lack of clear, precise, and up to date 

information of how those business processes are 

performed in real-life. Such kind of process analysis 

usually starts (but is not limited to) with the following 

tasks: (a) process flow visualization; (b) collecting 

metrics to identify weaknesses and bottlenecks; 

(c) comparison of the actual and pre-defined process 

models. The expected outcomes of the analysis are 

usually recommendations of how to improve or even 

redesign the existing business processes. 

 
 Fig. 1. Model of a corporate software ecosystem from data warehousing and reporting perspective 

 
Typical approach to deal with that task is to hire 

experts who perform audit and provide suggestions. As 

during the audit phase inputs are collected and analyzed by 

the involved experts mostly manually, this way has 

significant drawbacks such as time consuming, low 

precision of analysis results, strong dependency from the 

expert’s perception. Another important disadvantage is that 

collected inputs and outcomes quickly become outdated 

due to rapid changes in the business environment. So, in 

case of necessity to update previously obtained results, the 

audit has to be performed one more time almost from the 

very beginning. However, it should be noted that most part 

of necessary data is already accumulated by software 

systems. And the question is how to reduce manual efforts 

by automating mining that data and turning it into valuable 

insights. Proposed by the authors solution of the stated 

problem is represented in the further sections. 

Technical task 

On the high level the task is to implement an 

information technology with the purpose to address the 

problem of real-time business process monitoring. 

Statement of the technical task is decomposed into the 

following three parts: (a) functional requirements, (b) non-

functional requirements, and (c) requirements to the 

process discovery method. 

Functional requirements 

The core feature of RTBPM is to visualize a process 

flow updating it in real-time mode with accordance to 

receiving events from a continuous data stream. It should 

be noted that a predecessor of the current solution is 

described in [6]. Next features are based on the ideas of the 

refined process mining framework [1]: (a) prediction of a 

process instance completion time (based on the approach 

form [18]); (b) suggestions of next steps for the end users; 

and (c) alerting if actual state of a process breaches 

predefined rules. Like the process flow visualization 



SOFTWARE ARCHITECTURE DESIGN OF THE INFORMATION TECHNOLOGY           15 
 

functionality, the specified analytics features should work 

in real-time mode. 

Non-functional requirements 

Obviously, the list of tasks related to real-time 

processes monitoring is not limited by the functions 

specified above. Those four features are included into a so-

called functional core; however, the designed software 

architecture should be flexible enough so that it can be 

adapted to a specific practical application. The used 

software architecture building approach is based on the 

attribute-driven design method [4] which prescribes to 

specify so-called non-functional requirements as a subset 

of the quality attributes [5]. 

A. Performance. The main requirement to performance is 

that the system should process event data in real-time 

mode. In other words, such characteristics as latency (the 

interval from the time of receiving of an event till the time 

when the end user sees the changes caused by the event) 

and throughput (number of events processed by the system 

during a certain period of time) are highly important. 

Currently it is not possible to provide certain numeric 

thresholds for these characteristics since they depend on a 

hardware and software deployment infrastructure as well 

as number of running instances of the system’s components 

(see the scalability requirements below). 

B. Scalability in current context means the ability to 

variate latency and throughput according to the number of 

received events. First of all, it is important to decide what 

amount of data the system is intended to deal with. The 

reason behind necessity to make such decision is that a Big 

Data solution is usually more expensive in implementation 

and requires more powerful deployment infrastructure. 

However, in practice there are many cases when amount of 

processed data does not require Big Data technologies. 

That is why it has been decided that the represented version 

of RTBPM aims to deal with so-called “small” data (not 

Big Data). The difference between “small” and “big” data 

is explained in terms of so-called “5Vs” [12]. 

C. Interoperability for RTBPM has two aspects. From 

one hand, the software should fulfil so-called cloud 

agnostic requirements so that it can be deployed either on 

an organization’s on-premises infrastructure or on a cloud 

computing platform (e.g. Microsoft Azure, Amazon Web 

Services, Google Cloud Platform etc.). From the other 

hand, the system should support the following types of 

integrations with the rest of a corporate IT ecosystem: (a) 

input and (b) output. The purpose of input integrations is to 

receive event data from other software systems for its 

further processing and storing in the event data storage. 

The output integrations are done by exposing API so that 

other software can consume data or listen for events 

generated by RTBPM (e.g. subscribing for alerts thrown 

when predefined rules are breached during execution of a 

process). 

D. Extensibility. The represented version of RTBPM 

includes only core functionality and should allow to add 

new plug-ins necessary to a specific practical application 

(e.g. an anomaly detection module based on machine 

learning capabilities with appropriate visualization and 

alerting features). 

E. Configurability in the context of current system is 

about ability of adaptation to specific application needs 

without changing the source code. For example, alerting 

rules are defined by the administrator of the system 

considering requirements to a specific process. 

Requirements to the process discovery method 

The primary requirement to the used process discovery 

method is the ability to handle received data in real-time 

mode. In the process mining field such a task is named 

“streaming process discovery” (SPD). The algorithms 

should take as the input a special type of data called “event 

data” (formal definition of this term is provided in [1]). To 

maintain industry standards event data should be received 

in XES format [25]. 

The following limitations are acceptable for the 

process discovery method implemented in current version 

of RTBPM: (a) no possibility to handle concept drift [15] 

of a process model; (b) visualization of so-called 

“spaghetti” processes [13] is not supported. 

 

SOLUTION ARCHITECTURE 

Integration with a corporate IT ecosystem 

Before describing solution architecture of RTBPM it 

is important to outline what place it takes in an 

organization’s IT. Considering the model from Fig. 1 there 

are two main approaches of RTBPM integration with the 

rest of an IT ecosystem. The first and simpler approach is 

to connect RTBPM with a single system (Fig. 2). In this 

case RTBPM listens for events which happen within the 

connected system; additionally, it is possible a reverse 

integration, for example, when the connected system 

receives alerts thrown by RTBPM. Technically all these 

integrations are supposed to be done with open cross-

platform protocols (e.g. HTTP). 

The second integration approach implies that RTBPM 

takes the central place next to a data warehouse and 

reporting tool (Fig. 3) so that it receives event data from 

the entire ecosystem. The integration API exposed by 

RTBPM can be consumed, for example, by the reporting 

tool. It also should be noted that conceptually current case 

is close to a business activity monitoring (BAM) [24]..



ECONTECHMOD. AN INTERNATIONAL QUARTERLY JOURNAL – 2018, Vol. 07, No. 3, 13 – 22 

 

 

Fig. 2. Integration of RTBPM with a corporate software ecosystem: approach 1 

Fig. 3. Integration of RTBPM with a corporate software ecosystem: approach 2 

 

RTBPM is intended to process event data related to 

business operation (e.g. creating an order, approving an 

invoice etc.) as well as technical messages handled by 

corporate middleware (e.g. an enterprise services bus, 

messaging queue etc.). It also should be noted that 

RTBPM integration capabilities allow to cover the 

three levels of process mining defined by Gartner [16]: 

(a) single process, (b) operational, and (c) 

organizational end-to-end level. The first integration 

approach matches (a) and partially (b); the second one 

potentially is able to ensure all the three levels. 

Components model 

The architecture of RTBPM (Fig. 4) is designed 

according to the functional and non-functional 

requirements defined in section 3. On the high level the 

system consists of the following logical parts: (a) 

presentation layer, (b) integration API, and (c) data 

processing layer. 

The presentation layer consists of the frontend 

components as well as microservices with the purpose 

to serve the frontend. This layer is implemented in the 

pluggable manner so that the extensibility non-

functional requirement is satisfied (see section 3.2). 

The integration API is consumed by external systems 

so that the data accumulated within the system and 

results of data processing are accessible to the 

surrounding corporate ecosystem (see the 

interoperability requirement in section 3.2).

 



ECONTECHMOD. AN INTERNATIONAL QUARTERLY JOURNAL – 2018, Vol. 07, No. 3, 13 – 22 

 

 

 
Fig. 2. Component model of RTBPM 

 

The most important requirement is real-time event 

data processing. To meet such a requirement one of the 

following patterns are usually used: (a) lambda 

architecture [26] and (b) kappa architecture [19] (both 

have come from the Big Data field). The main 

peculiarity of the lambda architecture is that the data 

processing procedures are grouped in batch and speed 

layers. The first group is accountable for handling the 

entire data set including recent and historical data; 

consequently, those procedures are executed 

periodically and cannot handle data in real-time. In 

turns, the speed layer deals with an input stream 

ensuring data processing in real-time mode. The kappa 

architecture differs from the lambda architecture in that 

it does not include the batch layer. The implemented 

data processing methods (see more details in section 5) 

require both batch and speed layers. That is the reason 

of choosing the lambda architecture. 

Event data is obtained from the surrounding 

software by means of adapters which are developed 

considering specifics a practical application. Received 

event data items are pushed into a queue forming the 

event data stream. Then the data items are persisted in 

the event data storage and put into a temporary storage 

called recent event data. Keeping recent event data 

separately has the goal of ensuring quick access. Online 

and offline event data processing are implementations 

of the speed and batch layers respectively. 

Despite of the fact that the lambda architecture 

pattern is mostly used in the “Big Data world”, an 

approach based on its idea can bring benefits for a so-

called “small” data solution like the one described in 

current paper. The benefit is that it makes possible to 

transform current version of RTBPM (without 

significant changes in the implemented event data 

processing method) so that a new version supports Big 

Data.  

Technology stack 

The technologies of RTBPM have been chosen 

according the criteria: (a) a mature open source solution 

with good support supplied by its vendor and/or 

community; (b) ability to scale depending on the actual 

load; (c) supporting of the Linux operating system. 

Main technologies of current version of RTBPM are 

listed in Table 1 (for comparison, the technology stack 

of the earlier version of system is described in [8],[7]). 

Most of the technology choices are straight forward and 

do not require explanations, but the reasons behind 

some of the not so obvious decisions are briefly 

commented in the rest of current section. 

Process flow visualization (one of the core frontend 

features) is implemented by means the d3js library. The 

reason of choosing the d3js library is that it supplies 

powerful data visualization capabilities based on SVG 

technology [27]. The server-side components (on the 

microservices and data processing layers) are mostly 



18              A. BATYUK, V. VOITYSHYN 
 

Java-based. The main advantage of choosing Open 

JDK (instead of Oracle JDK) is the possibility to relay 

rather on the Java community than on a vendor’s 

implementation. As events are time-stamped data 

items, InfluxDB (one of the most popular time series 

databases [28]) has been selected to store historical 

event data. It should be noted that using InfluxDB is an 

experimental decision which effectiveness is going to 

be proved (of disproved) on the further stages of the 

project. Currently Camunda DMN is applied to 

specifying business rules for the alerting feature; 

however, in the future using Camunda is going to be 

expanded to the conformance checking [3] 

functionality. 

 

Table 1. Technology stack of RTBPM 
Compone

nt or 

RTBPM 

Technol

ogy 

Versi

on 

Official web site 

Frontend 
Angular 

6 or 

higher 

https://angular.io 

d3js 5.7.0 https://d3js.org 

Microservi

ces 

Java / 

Open 

JDK 

10 or 

higher 

http://openjdk.java.n

et 

Spring 

Boot 
2.0.4 

http://spring.io 

Event data 

stream 

Apache 

ActiveM

Q 

5.15.5 

http://activemq.apac

he.org 

Online 

event data 

processing 

Java / 

Open 

JDK 

10 or 

higher 

http://openjdk.java.n

et 

Offline 

event data 

processing 

Java / 

Open 

JDK 

10 or 

higher 

http://openjdk.java.n

et 

Recent 

event data 
Redis 4.0.11 

https://redis.io 

Event data 

storage 
InfluxDB 1.6.2 

https://influxdata.co

m 

Process 

models 

MongoD

B 
4.0.2 

https://mongodb.co

m 

Business 

rules 

Camunda 

DMN 
7.9.0 

https://camunda.com 

 

PROCESS DISCOVERY METHOD 

Choosing of the basic algorithm 

The algorithm behind the process discovery 

method of RTBPM belongs to the process mining field. 

During last two decades a set of process mining 

algorithms have been created and examined in practice 

against real-life data. One of the earliest and simplest 

technique is the alpha algorithm [2]. It takes event data 

and produces a Petri net. From practice standpoint the 

biggest disadvantage of the alpha algorithm is that the 

generated Petri nets are quite complex (mostly due to a 

big amount of activities and transitions among them) 

and consequently are hardly readable for the end users. 

More advanced in comparison with the alpha algorithm 

is Fuzzy Miner [13]. Its strong side is the ability to 

represent a complex process flow model on a certain 

level of abstraction hiding less important activities and 

transitions. Practice efficiency of the Fuzzy Miner 

algorithm proves the fact that it has been adopted by 

Disco [14] and Celonis [21]. Heuristic Miner [23] is 

another process mining technique which like the Fuzzy 

Miner takes into account importance of activities and 

transitions so that less important elements are not 

incorporated into a produced process model. Except the 

version for offline process mining there are Heuristic 

Miner modifications which aims streaming event data 

[11],[10]. Some additional info regarding comparison 

of process mining algorithms can be found in [20]. 

According to the requirements to the process flow 

discovery method (see section 3.3) the most suitable for 

the current version of RTBPM is the Heuristic Miner 

for stationary event data streams [11]. 

Implementation of the method 

The implemented algorithm is an adaptation of the 

Heuristic Miner to the lambda architecture. Current 

version aims stationary event data streams and does not 

support evolving streams. From the high-level 

standpoint, the streaming process discovery method of 

RTBPM consists of the steps: 

1. Adapters receive events from the surrounding 

world, convert them to the XES format [25], and 

pass to the message queue. 

2. Event data items are persisted into the event data 

storage and passed to the online processor. 

3. The online processor maintains the three 

collections: (a) the most recently received items 

with weights of their importance; (b) the most 

recent items for each case; (c) the most recent 

direct transitions with weights of their importance. 

The recent event data component is accountable 

for keeping these collections. 

4. The online processor triggers the Heuristic Miner 

algorithm when it is necessary to update a process 

model according newly received event data. 

5. The frontend part is refreshed automatically 

(without manual reload the web page) by 

receiving notification about updates of the process 

model by means of the Web Sockets [29] 

technology. 

In terms of the lambda architecture steps 1-5 

represent flow of the speed layer. In turns, the batch 

layer (offline event data processing) is executed 

consuming recent and historical event data. As running 

of the batch event data processing is resource 

consuming it is triggered relatively infrequently when 

the process model requires significant updates. 

Further details about implementation of the 

streaming process discovery method can be found in 

[9]. 

An experiment 

The implemented streaming process discovery 

method has been tested on the Road Traffic Fine 

Management Process [17]. Metrics of the dataset are 

represented in Table 2. 

  



SOFTWARE ARCHITECTURE DESIGN OF THE INFORMATION TECHNOLOGY           19 
 

Table 2. Metrics of the road traffic fine management 

process data set 

Metric Value 

Number of processes 1 

Number of process instances 150370 

Number of events 561470 

Number of event classes 11 

Start date 01 Jan 2000 

End date 18 Jun 2013 

 

Control-flow model of the process has been 

generated by RTBPM using the artificially simulated 

stream of events from the sample dataset [17].  

Two examples of the model snapshots are repre-

sented on Fig. 5 and Fig. 6 (the figures have been 

redrawn manually, because currently the visual models 

produced by RTBPM are not compact enough to be put 

into a publication).

 

 
Fig. 3. Control-flow model of the Road Traffic Fine Management Process for the 2000-2005 years timeframe 

 
Fig. 4. Control-flow model of the Road Traffic Fine Management Process for the 2008-2013 years timeframe 



20              A. BATYUK, V. VOITYSHYN 
 

 
Fig. 7. Control-flow model of the Road Traffic Fine Management Process produced by the Flexible Heuristics 

Miner plug-in of ProM 6.7 

 
To compare the results produced by the 

implemented platform the Flexible Heuristic Miner 

[22] plug-in of ProM 6.7 has been executed against the 

entire sample dataset. As can be seen from comparison 

of Fig. 5, Fig. 6, and Fig. 7 the model created by ProM 

is quite close to the outcomes produced by RTBPM (it 

is not expected that the three control-flow models are 

identical because each of them represents state of the 

real-life process for different timeframes). 

 

SUMMARY AND CONCLUSIONS 

Nowadays big amount of organizations suffers 

from lack of traceability of performed business 

processes. The problem is especially critical when 

complex flows, which require interaction of many 

people and cross a few software systems, are performed 

in frequently changing business environment where 

quick response and flexibility are crucial to success. 

The designed and implemented by the authors 

information technology supplies functionality of real-

time business process monitoring. The flow chart 

visualization feature distinguishes RTBPM from 

classical BI dashboarding solutions which usually do 

not take into account process origination of the 

analyzed data. The implemented software is intended to 

be connected with IT ecosystem of an organization so 

that it receives event data as well as exposes an 

integration API which can be consumed by other 

systems. Since in practice specific requirements to real-

time business processes monitoring can variate in a 

wide range RTBPM is designed as a pluggable platform 

with possibility to be extended according to the needs 

of an organization. Another important peculiarity of the 

represented software is that it is built with free 

components which allows to avoid additional licensing 

fees. 

Adaptation of streaming version of the Heuritic 

miner algorithm [11] to a lambda architecture-based 

[26] system has been used for the first time by the 

authors. The implemented streaming process discovery 

method has demonstrated satisfactory results on a test 

dataset [17]. As shown in section 5.3 the models 

produced by RTBPM match the model generated by the 

Flexible Heuristic Miner plug-in of ProM 6.7 [22]. 

One of the experimental improvements introduced 

in the RTBPM architecture is using a time series 

database [28] to store event data. It is expected 

increasing performance of queries to the event data 

storage and consequently more efficient work of the 

batch event data processing. Proving (or disproving) 

benefits of such a decision is planned for next steps of 

the project. 

Obtaining event data and converting it to the form 

acceptable for the process mining techniques is one of 

the most difficult part of connecting RTBPM with an 

organization’s IT ecosystem. So, there is a risk that 

such kind of difficulties may become serious 

impediment for success of an integration project. One 

of the approaches to mitigate that risk is to implement 

adapters for some widely-spread software such as SAP, 

MS Dynamics 365, Atlassian Jira, GitHub etc. 

The nearest steps of the project are going to be 

concentrated on advancing the currently implement 

streaming process discovery method so that it supports 

concept drift [15] of the process model. Another task 

reserved for the future releases is to introduce the 

conformance checking [3] functionality which makes 

possible automatic comparison of the real-life and 

predefined processes. To further the project from the 

strategic perspective it worth to consider launching a 

Big Data version of RTBPM and also implementing 

multitenancy support to make possible SaaS (System as 

a Service) distribution model.  



SOFTWARE ARCHITECTURE DESIGN OF THE INFORMATION TECHNOLOGY           21 
 

REFERENCES 

 

1. Van der Aalst, W.M.P. 2016. Process mining: data 

science in action, 2nd ed. Berlin: Springer. 

2. Van der Aalst, W.M.P., Weijters, T., Maruster, 

L. 2004. Workflow mining: discovering process 

models from event logs. IEEE Transactions on 

Knowledge and Data Engineering, 16(9), 1128-

1142. 

3. Van der Aalst, W.M.P. et al. 2012. Process Mining 

Manifesto. In: F. Daniel, K. Barkaoui, S. Dustdar 

(Ed.), Business Process Management Workshops. 

BPM 2011. Lecture Notes in Business Information 

Processing, vol. 99. 169-194. Berlin-Heidelberg: 

Springer. 

4. Bass, L., Clements, P., and Kazman, R. 2012. 

Software Architecture in Practice, 3rd ed. Addison-

Wesley Professional, 120 p. 

5. Barbacci, M., Klein, M. H., Longstaff, T.H., 

Weinstock, C.B. 1995. Quality Attributes (Report 

No. CMU/SEI-95-TR-021). SEI at Carnegie Mellon 

University, Pittsburgh, Pennsylvania. Retrieved 

from 

https://resources.sei.cmu.edu/asset_files/Technical

Report/1995_005_001_16427.pdf 

6. Batyuk, A. and Voityshyn, V. 2017. Business 

Processes Monitoring by Means of Real-Time 

Visual Dashboards. In A. Peleschyshyn, O. 

Markovets (Eds.), The 6th International Academic 

Conference on Information, Communication, 

Society. Lviv, Ukraine: Lviv Polytechnic Publishing 

House.2017. 204-205.  

7. Batyuk, A. and Voityshyn, V. 2018. Real-Time 

Process Monitoring Platform: Technical 

Implementation. In A. Peleschyshyn, O. Markovets 

(Eds.), The 7th International Academic Conference 

on Information, Communication, Society 2018  

Lviv, Ukraine: Lviv Polytechnic Publishing House. 

275-276. 

8. Batyuk, A. and Voityshyn, V. 2018. Software 

Architecture Design of the Real-Time Processes 

Monitoring Platform. In O. Vynokurova, D. 

Peleshko (Eds.), 2018 IEEE Second International 

Conference on Data Stream Mining & Processing 

DSMP’2018. Lviv, Ukraine: Lviv Polytechnic 

Publishing House.  98-101 

9. Batyuk, A. and Voityshyn V. 2018. Streaming 

Process Discovery for Lambda Architecture-based 

Process Monitoring Platform. In T. Shestakevych 

(Eds.), 2018 IEEE 13th International Scientific and 

Technical Conference on Computer Science and 

Information Technologies. CSIT’2018 Lviv, 

Ukraine: Vezha and Co. 298-301. 

10. Burattin, A. 2015. Process Mining for Stream Data 

Sources. Process Mining Techniques in Business 

Environments. Lecture Notes in Business 

Information Processing. Cham: Springer. 177-204. 

11. Burattin, A., Sperduti, A., and van der Aalst, 

W.M.P. 2012. Heuristics Miners for Streaming 

Event Data. CoRR (Computing Research 

Repository). Retrieved from  

https://arxiv.org/abs/1212.6383 

12. Fan, W. and and Bifet, A. 2012. Mining Big Data: 

Current Status, and Forecast to the Future. SIGKDD 

Explorations, 14(2), 1-5. DOI: 

10.1145/2481244.2481246 

13. Günther C.W. and van der Aalst W.M.P. 2007. 

Fuzzy Mining – Adaptive Process Simplification 

Based on Multi-perspective Metrics. In: Alonso G., 

Dadam P., Rosemann M. (Eds.), Business Process 

Management. BPM 2007. Lecture Notes in 

Computer Science, 4714 (pp. 328-343). Berlin, 

Heidelberg: Springer. 

14. Günther, Ch.W. and Rozinat, A. 2012. Disco: 

Discover Your Processes. Proceedings of the 

Demonstration Track of the 10th International 

Conference on Business Process Management (BPM 

2012), Tallinn, Estonia, 940, 40-44. 

15. Jagadeesh Chandra Bose, R. P., and van der 

Aalst, Wil, M. P., Žliobaitė, I., Pechenizkiy, M. 

2011. Handling Concept Drift in Process Mining. 

Advanced Information Systems Engineering. 

CAiSE 2011. Lecture Notes in Computer Science, 

6741, 391-405. 

16. Kerremans, M. 2018. Market Guide for Process 

Mining. Gartner, Inc. Retrieved from 

https://www.gartner.com/doc/3870291/market-

guide-process-mining 

17. de Leoni, M. and Mannhardt, F. 2015. Road 

Traffic Fine Management Process. Retrieved from 

https://data.4tu.nl/repository/uuid:270fd440-1057-

4fb9-89a9-b699b47990f5 

18. Mulesa O., Geche F., Batyuk A., and Buchok V. 

2018. Development of Combined Information 

Technology for Time Series Prediction. In: N. 

Shakhovska, V. Stepashko (Eds.), Advances in 

Intelligent Systems and Computing II. CSIT’2017. 

Advances in Intelligent Systems and Computing, 

689  Cham: Springer.  361-373. 

19. Pathirage, M. 2017. kappa-architecture.com. 

Retrieved from http://milinda.pathirage 

.org/kappa-architecture.com/ 

20. Rozinat, A. 2010. ProM Tips - Which Mining 

Algorithm Should You Use. Retrieved from 

https://fluxicon.com/blog/2010/10/prom-tips-

mining-algorithm/ 

21. Veit, F., Geyer-Klingeberg, J., Madrzak, J., 

Haug, M., and Thomson, J. 2017. The Proactive 

Insights Engine: Process Mining meets Machine 

Learning and Artificial Intelligence. The 15th 

International Conference on Business Process 

Management (BPM 2017). BPM Demo Track and 

BPM Dissertation Award, Barcelona, Spain, 1920. 

22. Weijters, A. J. M. M. and Ribeiro, J. T. S. 2011. 
Flexible Heuristics Miner (FHM). 2011 IEEE 

Symposium on Computational Intelligence and Data 

Mining (CIDM), Paris, 310-317. 



22              A. BATYUK, V. VOITYSHYN 
 

23. Weijters, A.J.M.M., van der Aalst, W.M.P., and 

Alves De Medeiros, A.K. 2006. Process Mining 

with the Heuristics Miner Algorithm. Eindhoven: 

BETA Working Paper Series, WP 166. 

24. Business activity monitoring. (2018, Mar 7). 
Retrieved from 

https://en.wikipedia.org/wiki/Business_activity_mo

nitoring 

25. IEEE Standard for eXtensible Event Stream 
(XES) for Achieving Interoperability in Event Logs 

and Event Streams, IEEE Std 1849-2016, 2016.

Lambda Architecture. 2017. Retrieved from 

http://lambda-architecture.net/ 

26. Scalable Vector Graphics (SVG) 1.1 (Second 

Edition). (2011, Aug 16). Retrieved from 

https://www.w3.org/TR/2011/REC-SVG11-

20110816/ 

27. Time Series Database (TSDB) Explained. (2018). 
Retrieved from https://www.influxdata.com/time-

series-database/ 

28. Web sockets. (2018, Sep). Retrieved from 

https://html.spec.whatwg.org/multipage/web-

sockets.html 


