Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Wykrywanie i klasyfikacja lądowisk dla helikopterów w celu bezpiecznego lądowania helikoptera
Języki publikacji
Abstrakty
One of the most important factor that plays a great role in the safty issue of the helicopter and the pilot is the response to system failure and pilot conciousness, so the helicopter must be delivered a safe landing point.in this reseach a helipad detection and recognition for helicopter autolanding have been presented , where the comparison tool was specifically used vgg19 and resnet50 CNN algorithms were used to classify safe helipads or occupied one to achieve autolanding, a dataset consisting of 4012 images divided into training and validation of the performance of the Resnet50 model and VGG19 where the accuracy was 94% VGG19 and Accuracy 96% Resnet50 was the best.
Jednym z najważniejszych czynników odgrywających ogromną rolę w kwestii bezpieczeństwa śmigłowca i pilota jest reakcja na awarię systemu i świadomość pilota, dlatego śmigłowiec musi otrzymać bezpieczne miejsce lądowania. W tym badaniu wykrycie i rozpoznanie lądowiska dla helikopterów dla automatycznego lądowania helikoptera, gdzie specjalnie wykorzystano narzędzie porównawcze vgg19 i resnet50, zastosowano algorytmy CNN do klasyfikacji bezpiecznych lądowisk dla helikopterów lub zajętych w celu osiągnięcia automatycznego lądowania, zbiór danych składający się z 4012 obrazów podzielonych na trening i walidację działania modelu Resnet50 i VGG19, gdzie dokładność wyniosła 94%, VGG19 i dokładność 96% Resnet50 był najlepszy.
Wydawca
Czasopismo
Rocznik
Tom
Strony
127--129
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- Northern Technical University, Engineering Technical College of Mosul, Department of Computer Engineering Technology, Iraq
autor
- Northern Technical University, Engineering Technical College of Mosul, Department of Computer Engineering Technology, Iraq
- Northern Technical University, Engineering Technical College of Mosul, Department of Computer Engineering Technology, Iraq
Bibliografia
- [1] Iryna Bulakh, Nina Semyroz, Svitlana Kysil , Tetiana Bulhakova , Nataliia Mezhenna , Vadym Abyzov , Svitlana Zymina , Viktoriia Bulakh, Architecture of Air Transport Medicine Facilities, journal, Civil Engineering and Architecture 10(5): 1840-1853, 2022.
- [2] AdAm dzIubIńSkI, cfD anaLYsis of WinD Direction infLuence on rooftoP heLiPaD oPerations safetY, journal, transactions of the institute of aviation, no. 1(242), pp. 23-35, Warsaw 2016.
- [3] Domian Brewczynski,Grzegorz tora, DYNAMIC POSITIONING SYSTEM OF HELICOPTER PAD ON THE SHIP, journal, Journal of KONES Powertrain and Transport, Vol. 21, No. 4 2014.
- [4] Laurent Muratet ,Stephane Doncieux , Yves Briere , Jean-Arcady Meyer, A Contribution to Vision-Based Autonomous Helicopter Flight in Urban Environments,journal,Robotics and autonomous systems,vol 50,31 march 2005,page 195-209.
- [5] Anders la Cour-Harbo , and Henrik Schiøler, Probability of Low-Altitude Midair Collision Between General Aviation and Unmanned Aircraft.journal, Risk Analysis, Vol. 39, No. 11, 2019.
- [6] Evangelos Chatzikalymnios , Konstantinos Moustakas, Landing Site Detection for Autonomous Rotor Wing UAVs Using Visual and Structural Information, Journal of Intelligent & Robotic Systems (2022) 104: 27.
- [7] Magnus Vestergren, Automatic Takeoff and Landing of Unmanned Fixed Wing Aircrafts A Systems Engineering Approach ,2016.
- [8] Sohrab Mokhtari , Alireza Abbaspour , Kang K. Yen and Arman Sargolzaei , ]. Neural Network-Based Active Fault-Tolerant Control Design for Unmanned Helicopter with Additive Faults, 14 June 2021.
- [9] Hoang Dinh Thinh , Le Thi Hong Hieu, DETECTION AND LOCALIZATION OF HELIPAD IN AUTONOMOUS UAV LANDING: A COUPLED VISUAL-INERTIAL APPROACH WITH ARTIFICIAL INTELLIGENCE,jounal, Transport and Communications Science Journal, Vol. 71, Issue 7 (09/2020), 828-839.
- [10] Dheeraj Komandur, Sagar Karki, Shebin Silvister, Descent Angle Calculation for UAVs using Monocular Camera, journal, International Journal of Computer Applications (0975 – 8887) Volume 175 – No. 31, November 2020.
- [11] Mamoona Humayun , R. Sujatha , Saleh Naif Almuayqil and N. Z. Jhanjhi , A Transfer Learning Approach with a Convolutional Neural Network for the Classification of Lung Carcinoma,journal, Healthcare 2022, 10, 1058.
- [12] V. Sudha1 and T. R. Ganeshbabu, A Convolutional Neural Network Classifier VGG-19 Architecture for Lesion Detection and Grading in Diabetic Retinopathy Based on Deep Learning, Computers, Materials & Continua, DOI:10.32604/cmc,2020.012008.
- [13] Bin Li , Dimas Lima b, Facial expression recognition via ResNet-50,journal, International Journal of Cognitive Computing in Engineering 2 (2021) 57–64.
- [14] Goru Uday Kiran , Garikapati Bindu , Kanegonda Ravi Chythanya and Kondru Ayyappa Swamy, Spiral Search Grasshopper Features Selection with VGG19-ResNet50 for Remote Sensing Object Detection Andrzej Stateczny ,journal, Remote Sens. 2022, 14, 5398.
- [15] Bishwas Mandal, Adaeze Okeukwu, Yihong Theis,Masked Face Recognition using ResNet-50,journal, arXiv:2104.08997v1 [cs.CV] 19 Apr 2021.
- [16] Bishwas Mandal, Adaeze Okeukwu, Yihong Theis, Masked Face Recognition using ResNet-50, arXiv:2104.08997v1 [cs.CV] 19 Apr 2021.
- [17] Sajja Tulasi Krishna, Hemantha Kumar Kalluri, Deep Learning and Transfer Learning Approaches for Image Classification,journal, International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-7, Issue-5S4, February 2019.
- [18] Rahul Chauhan, Kamal Kumar Ghanshala, R.C Joshi, Convolutional Neural Network (CNN) for Image Detection and Recognition,First International Conference on Secure Cyber Computing and Communication (ICSCCC) 2018.
- [19] Huthaifa A. Ahmed, Emad A. Mohammed, Detection and Classification of The Osteoarthritis in Knee Joint Using Transfer Learning with Convolutional Neural Networks (CNNs), Iraqi Journal of Science, 2022, Vol. 63, No. 11, pp: 5058-5071.
- [20] A Z Mohammed , E A Mohammed and A M Aaref, Real-Time Driver Awareness Detection System,journal, Materials Science and Engineering 745 (2020) 012053.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b2c8c23-fbc9-4997-856a-dbeb1d208b3f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.