Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article reports ways and trends in polylactide (PLA) modification methods concerning literature data. The paper consists of two parts and presents the process of polylactide production, and the connection of changes in its properties with the polymer structure obtained thanks to appropriate process conditions and methods of its final polymer properties improvement. Discussing both the most advantageous properties and disadvantages, the possibilities of increasing the scope of its applicability in reference to selected modification methods were presented and discussed. The presented research results related to various modification methods arrange the knowledge from the discussed scope, indicating the best possible effects and limitations. The most considerable emphasis is on the methods and results obtained from heterogeneous nucleation and incorporating various fillers in the PLA matrix. The other methods, like applying chemical interaction methods (crosslinking, using chain extenders), development of polymer blends, copolymerization, and plasticization, are presented synthetically. In summary, the review present and organizes the achievements in the possibility of modifying the most prospective biodegradable polymer, which is PLA.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
9--29
Opis fizyczny
Bibliogr. 100 poz., fig., tab.
Twórcy
autor
- Poznan University of Technology, Institute of Materials Technology, Piotrowo 3, 61-138 Poznan, Poland
autor
- Poznan University of Technology, Institute of Materials Technology, Piotrowo 3, 61-138 Poznan, Poland
Bibliografia
- 1. Penczek S, Pretula J, Lewinski P. Polimery z odnawialnych surowców, polimery biodegradowalne. Polimery/Polymers. 2013; 58(11–12): 835–46.
- 2. Directive (EU) 2018/852 of the European Parliament and of the Council of 30 May 2018 amending Directive 94/62/EC on packaging and packaging waste.
- 3. Łopot D., M. Siołek, S. Maślanka, and Ł. Hamryszak, Zastosowanie odpadów z przemysłu mleczarskiego do produkcji polimerów biodegradowalnych. Chemik, 2014, 68(8), 703–709.
- 4. Gruber P. and M. O’Brien, Polylactides’ NatureWorks® PLA. Biopolym. Online, 2002, 235–239, doi: 10.1002/3527600035.bpol4008.
- 5. Vink E.T.H. and S. Davies, Life Cycle Inventory and Impact Assessment Data for 2014 Ingeo® Polylactide Production. Ind. Biotechnol., 2015, 11(3), 167–180, doi: 10.1089/ind.2015.0003.
- 6. Vink E.T.H. et al., The sustainability of nature worksTM polylactide polymers and ingeoTM polylactide fibers: An update of the future. Initiated by the 1st International Conference on Bio-based Polymers (ICBP 2003), November 12-14 2003, Saitama, Japan. Macromol. Biosci., 4(6), 551–564, 2004, doi: 10.1002/mabi.200400023.
- 7. Żenkiewicz M. and Richert Józef, Synteza, właściwości i zastosowanie polilaktydu, Przetwórstwo Tworzyw, 8, 192–199, 2009.
- 8. Castro-Aguirre E., F. Iñiguez-Franco, H. Samsudin, X. Fang, and R. Auras, Poly(lactic acid)—Mass production, processing, industrial applications, and end of life. Adv. Drug Deliv. Rev., 107, 333–366, 2016, doi: 10.1016/j.addr.2016.03.010.
- 9. Gołębiewski J., E. Gibas, and R. Malinowski, Wybrane polimery biodegradowalne otrzymywanie, właściwości, zastosowanie. Polimery, 3(11), 799– 807, 2008.
- 10. Vink E.T.H., D.A. Glassner, J.J. Kolstad, R.J. Wooley, and R.P. O’Connor, The eco-profiles for current and near-future NatureWorks® polylactide (PLA) production. Ind. Biotechnol., 3(1), 58–81, 2007, doi: 10.1089/ind.2007.3.058.
- 11. Vink E.T.H., K.R. Rábago, D.A. Glassner, and P.R. Gruber, Applications of life cycle assessment to NatureWorksTM polylactide (PLA) production. Polym. Degrad. Stab., 80(3), 403–419, 2003, doi: 10.1016/S0141-3910(02)00372-5.
- 12. Morão A. and F. de Bie, Life Cycle Impact Assessment of Polylactic Acid (PLA) Produced from Sugarcane in Thailand. J. Polym. Environ., 27(11), 2523– 2539, 2019, doi: 10.1007/s10924-019-01525-9.
- 13. Foltynowicz Z. and P. Jakubiak, Poli(kwas mlekowy) – biodegradowalny polimer otrzymywany z surowców roślinnych. Polimery, 47(11–12), 769–774, 2002.
- 14. Lim L.T., R. Auras, and M. Rubino, Processing technologies for poly(lactic acid). Prog. Polym. Sci., 33(8), 820–852, 2008, doi: 10.1016/j.progpolymsci.2008.05.004.
- 15. Luminy ® PLA neat resins Luminy ® PLA neat resins PLA bioplastics for a brighter future, 2011.
- 16. Garlotta D., A Literature Review of Poly (Lactic Acid) A Literature Review of Poly (Lactic Acid). J. Polym. Environ., 9(2), 63–84, 2019.
- 17. Farah S., D.G. Anderson, and R. Langer, Physical and mechanical properties of PLA , and their functions in widespread applications – A comprehensive review. pp. 26, 2016.
- 18. Hartmann M.H., High Molecular Weight Polylactic Acid Polymers. Biopolym. from Renew. Resour., 367–411, 1998, doi: 10.1007/978-3-662-03680-8_15.
- 19. Siiderg A. and J.H. Niisman, Stabilization of poly(L-lactide) in the melt. Polym. Degrad. Stab., 46, 25–30, 1994.
- 20. McNeill I.C. and H.A. Leiper, Degradation studies of some polyesters and polycarbonates-2. Polylactide: Degradation under isothermal conditions, thermal degradation mechanism and photolysis of the polymer. Polym. Degrad. Stab., 11(4), 309–326, 1985, doi: 10.1016/0141-3910(85)90035-7.
- 21. S. Spinella et al., Polylactide/cellulose nanocrystal nanocomposites: Efficient routes for nanofiber modification and effects of nanofiber chemistry on PLA reinforcement. Polymer (Guildf), 65, 9–17, 2015, doi: 10.1016/j.polymer.2015.02.048.
- 22. L. Xiao, B. Wang, G. Yang, and M. Gauthier, Poly (Lactic Acid)-Based Biomaterials: Synthesis, Modification and Applications. 2012.
- 23. Gałęski A., E. Piórkowska, M. Pluta, Z. Kuliński, and R. Masirek, Modyfikacia fizycznych właściwości polilaktydu. Polimery, 50, 7–8, 2005.
- 24. Labrecque L.V., R.A. Kumar, V. Davé, R.A. Gross, and S.P. Mccarthy, Citrate esters as plasticizers for poly(lactic acid). J. Appl. Polym. Sci., 66(8), 1507–1513, 1997, doi: 10.1002/ (SICI)1097-4628(19971121)66:8<1507::AIDAPP11>3.0.CO;2-0.
- 25. Gadzinowska K., Z. Kuliński, and E. Piórkowska, Plastyfikacja polilaktydu. Polimery, 54(2), 83–90, 2009.
- 26. Younes H. and D. Cohn, Phase separation in poly(ethylene glycol)/poly(lactic acid) blends. Eur. Polym. J., 24(8), 765–773, 1988.
- 27. Abdelwahab M.A., A. Flynn, B. Sen Chiou, S. Imam, W. Orts, and E. Chiellini, Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends. Polym. Degrad. Stab., 97(9), 1822–1828, 2012, doi: 10.1016/j.polymdegradstab.2012.05.036.
- 28. Patrício T. and P. Bártolo, Thermal stability of PCL/ PLA blends produced by physical blending process. Procedia Eng., 59, 292–297, 2013, doi: 10.1016/j. proeng.2013.05.124.
- 29. Weng Y.X., Y.J. Jin, Q.Y. Meng, L. Wang, M. Zhang, and Y.Z. Wang, Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polym. Test., 32(5), 918–926, 2013, doi: 10.1016/j.polymertesting.2013.05.001.
- 30. Xu J., J. Zhang, W. Gao, H. Liang, H. Wang, and J. Li, Preparation of chitosan/PLA blend micro/ nanofibers by electrospinning. Mater. Lett., 63(8), 658–660, 2009, doi: 10.1016/j.matlet.2008.12.014.
- 31. N. Wang, J. Yu, and X. Ma, Preparation and characterization of thermoplastic starch/PLA blends by one-step reactive extrusion. Polym Int, 56(11), 1440–1447, 2007.
- 32. Vrsaljko D., D. Macut, and V. Kovačevic, Potential role of nanofillers as compatibilizers in immiscible PLA/LDPE Blends. J. Appl. Polym. Sci., 132(6), 1–14, 2015, doi: 10.1002/app.41414.
- 33. Li H.Z., S.C. Chen, and Y.Z. Wang, Thermoplastic PVA/PLA blends with improved processability and hydrophobicity. Ind. Eng. Chem. Res., 53(44), 17355–17361, 2014, doi: 10.1021/ie502531w.
- 34. Yoo T.W., H.G. Yoon, S.J. Choi, M.S. Kim, Y.H. Kim, and W.N. Kim, Effects of compatibilizers on the mechanical properties and interfacial tension of polypropylene and poly(lactic acid) blends. Macromol. Res., 18(6), 583–588, 2010, doi: 10.1007/ s13233-010-0613-y.
- 35. Huang M.H., S. Li, and M. Vert, Synthesis and degradation of PLA-PCL-PLA triblock copolymer prepared by successive polymerization of ε-caprolactone and DL-lactide. Polymer (Guildf)., 45(26), 8675–8681, 2004, doi: 10.1016/j.polymer.2004.10.054.
- 36. Agrawal C.M., D. Huang, J.P. Schmitz, and K.A. Athanasiou, Elevated temperature degradation of a 50:50 copolymer of PLA-PGA. Tissue Eng., 3(4), 345–352, 1997, doi: 10.1089/ten.1997.3.345.
- 37. Kasyapi N. and A.K. Bhowmick, Nanolamellar triblock of poly D, L-lactideδ-valerolactoneD, Llactide with tuneable glass transition and crystallinity for drug delivery vesicle Nibedita. R. Soc. Chem., 2014, [Online]. Available: http://xlink.rsc. org/?DOI=C5TC02043C.
- 38. Matsumura S., K. Tsukada, and K. Toshima, Novel lipase-catalyzed ring-opening copolymerization of lactide and trimethylene carbonate forming poly(ester carbonate)s. Int. J. Biol. Macromol., 25(1–3), 161– 167, 1999, doi: 10.1016/S0141-8130(99)00030-6.
- 39. Xiao R.Z., Z.W. Zeng, G.L. Zhou, J.J. Wang, F.Z. Li, and A.M. Wang, Recent advances in PEG-PLA block copolymer nanoparticles. Int. J. Nanomedicine, 5(1), 1057–1065, 2010, doi: 10.2147/IJN.S14912.
- 40. Quynh T.M., H. Mitomo, N. Nagasawa, Y. Wada, F. Yoshii, and M. Tamada, Properties of crosslinked polylactides (PLLA & PDLA) by radiation and its biodegradability. Eur. Polym. J., 43(5), 1779–1785, 2007, doi: 10.1016/j.eurpolymj.2007.03.007.
- 41. Quynh T.M., H. Mitomo, M. Yoneyama, and N.Q. Hien, Properties of Radiation-Induced Crosslinking Stereocomplexes Derived From Poly(L-Lactide) and Different Poly(D-Lactide) Tran. Polym. Eng. Sci., 49(5), 970–976, 2009.
- 42. Gref R., Y. Minamitake, M.T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langerl, Biodegradable Long-Circulating Polymeric Nanospheres. Science (80-). 263, March, p. 1600, 1994, [Online]. Available: www.sciencemag.org.
- 43. P.K. Chu, J.Y. Chen, L.P. Wang, and N. Huang, Plasma-surface modification of biomaterials. Mater. Sci. Eng. R Reports, 36(5–6), 143–206, 2002, doi: 10.1016/S0927-796X(02)00004-9.
- 44. Favia P. and R. D’Agostino, Plasma treatments and plasma deposition of polymers for biomedical applications. Surf. Coatings Technol., 98(1–3), 1102– 1106, 1998, doi: 10.1016/S0257-8972(97)00285-5.
- 45. Al-Itry R., K. Lamnawar, and A. Maazouz, Reactive extrusion of PLA, PBAT with a multi-functional epoxide: Physico-chemical and rheological properties. Eur. Polym. J., 58, 90–102, 2014, doi: 10.1016/j.eurpolymj.2014.06.013.
- 46. Zhong W.E.I. et al., Study on Biodegradable Polymer Materials Based on Poly-. 2546–2551, 1999.
- 47. Dawin T.P., Z. Ahmadi, and F.A. Taromi, Bio-based solution-cast blend films based on polylactic acid and polyhydroxybutyrate: Influence of pyromellitic dianhydride as chain extender on the morphology, dispersibility, and crystallinity. Prog. Org. Coatings, 119, 23–30, 2018, doi: 10.1016/j.porgcoat.2018.02.003.
- 48. Yahyaee N., A. Javadi, H. Garmabi, and A. Khaki, Effect of Two-Step Chain Extension using Joncryl and PMDA on the Rheological Properties of Poly (lactic acid). Macromol. Mater. Eng., 305(2), 1–13, 2020, doi: 10.1002/mame.201900423.
- 49. Barczewski M., D. Czarnecka-Komorowska, J. Andrzejewski, T. Sterzyński, M. Dutkiewicz, and B. Dudziec, Właściwości przetwórcze termoplastycznych tworzyw polimerowych modyfikowanych silseskwioksanami (POSS). Polimery/Polymers, 58(10), 805–815, 2013, doi: 10.14314/polimery.2013.805.
- 50. Thierry A., B. Fillon, C. Straupé, B. Lotz, and J. C. Wittmann, Polymer nucleating agents: Efficiency scale and impact of physical gelation. Solidif. Process. Polym., 31, 28–31, 2007, doi: 10.1007/ bfb0115569.
- 51. Kawamoto N., A. Sakai, T. Horikoshi, T. Urushihara, and E. Tobita, Nucleating agent for poly(Llactic acid) An optimization of chemical structure of hydrazide compound for advanced nucleation ability. J. Appl. Polym. Sci., 103(1), 198–203, 2007, doi: 10.1002/app.25109.
- 52. Shakoor A. and N. L. Thomas, Talc as a nucleating agent and reinforcing filler in poly(lactic acid) composites. Polym. Eng. Sci., 54(1), 64–70, Jan. 2014, doi: 10.1002/pen.23543.
- 53. Nam P. H., N. Ninomiya, A. Fujimori, and T. Masuko, Crystallization characteristics of intercalated poly(L-lactide)/organo-modified montmorillonite hybrids. Polym. Eng. Sci., 46(1), 39–46, Jan. 2006, doi: 10.1002/pen.20436.
- 54. Ray S.S., K. Yamada, A. Ogami, M. Okamoto, and K. Ueda, New polylactide/layered silicate nanocomposite: Nanoscale control over multiple properties. Macromol. Rapid Commun., 23(16), 943–947, 2002, doi:10.1002/1521-3927(200211)23:16<943::AIDMARC943>3.0.CO;2-F.
- 55. Han L. et al., Preparation and characteristics of a novel nano-sized calcium carbonate (nanoCaCo3)-supported nucleating agent of poly(Llactide). Polym. Eng. Sci., 52(7), 1474–1484, Jul. 2012, doi: 10.1002/pen.23095.
- 56. Devaux E., C. Aubry, C. Campagne, and M. Rochery, PLA/carbon nanotubes multifilament yarns for relative humidity Textile sensor. J. Eng. Fiber. Fabr., 6(3), 13–24, 2011, doi: 10.1177/155892501100600302.
- 57. Shalom H. et al., Nanocomposite of poly(L-lactic acid) with inorganic nanotubes of WS 2. Lubricants, 7(3), 2019, doi: 10.3390/lubricants7030028.
- 58. Han L., P. Pan, G. Shan, and Y. Bao, Stereocomplex crystallization of high-molecular-weight poly(l-lactic acid)/poly(d-lactic acid) racemic blends promoted by a selective nucleator. Polymer (Guildf)., 63, 144–153, 2015, doi: 10.1016/j.polymer.2015.02.053.
- 59. Li C., Q. Dou, Z. Bai, and Q. Lu, Non-isothermal crystallization behaviors and spherulitic morphology of poly(lactic acid) nucleated by a novel nucleating agent. J. Therm. Anal. Calorim., 122(1), 407–417, 2015, doi: 10.1007/s10973-015-4677-y.
- 60. Zhao Y., B. Liu, C. You, and M. Chen, Effects of MgO whiskers on mechanical properties and crystallization behavior of PLLA/MgO composites. Mater. Des., 89, 573–581, 2016, doi: 10.1016/j. matdes.2015.09.157.
- 61. Xu Y. and L. Wu, Synthesis of organic bisurea compounds and their roles as crystallization nucleating agents of poly(l-lactic acid). Eur. Polym. J., 49(4), 865–872, 2013, doi: 10.1016/j.eurpolymj.2012.12.015.
- 62. Bai H., C. Huang, H. Xiu, Q. Zhang, and Q. Fu, Enhancing mechanical performance of polylactide by tailoring crystal morphology and lamellae orientation with the aid of nucleating agent. Polymer (Guildf)., 55(26), 6924–6934, 2014, doi: 10.1016/j. polymer.2014.10.059.
- 63. Turan D., H. Sirin, and G. Ozkoc, Effects of POSS particles on the mechanical, thermal, and morphological properties of PLA and Plasticised PLA. J. Appl. Polym. Sci., 121(2), 1067–1075, Jul. 2011, doi: 10.1002/app.33802.
- 64. Cai Y.H., Y. Tang, and L.S. Zhao, Poly(l -lactic acid) with the organic nucleating agent N,N,N′-tris(1Hbenzotriazole) trimesinic acid acethydrazide: Crystallization and melting behavior. J. Appl. Polym. Sci., 132(32), 1–7, 2015, doi: 10.1002/app.42402.
- 65. He D., Y. Wang, C. Shao, G. Zheng, Q. Li, and C. Shen, Effect of phthalimide as an efficient nucleating agent on the crystallization kinetics of poly(lactic acid). Polym. Test., 32(6), 1088–1093, 2013, doi: 10.1016/j.polymertesting.2013.06.005.
- 66. Cai Y.H., L.L. Tian, and Y. Tang, Crystallization and melting behavior of poly(L-lactic acid) modifed with salicyloyl hydrazide derivative. Polimery/ Polymers, 62(10), 734–742, 2017, doi: 10.14314/ polimery.2017.734.
- 67. Li H. and M.A. Huneault, Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer (Guildf)., 48(23), 6855–6866, 2007, doi: 10.1016/j.polymer.2007.09.020.
- 68. Harris A.M. and E.C. Lee, Improving mechanical performance of injection molded PLA by controlling crystallinity. J. Appl. Polym. Sci., 107(4), 2246– 2255, Feb. 2008, doi: 10.1002/app.27261.
- 69. Barczewski M. et al., Development of polylactide composites with improved thermomechanical properties by simultaneous use of basalt powder and a nucleating agent. Polym. Compos., 41(7), 2947–2957, 2020, doi: 10.1002/pc.25589.
- 70. Nagarajan V., A.K. Mohanty, and M. Misra, Crystallization behavior and morphology of polylactic acid (PLA) with aromatic sulfonate derivative. J. Appl. Polym. Sci., 133(28), 1–11, 2016, doi: 10.1002/app.43673.
- 71. Murariu M. and P. Dubois, PLA composites: From production to properties. Adv. Drug Deliv. Rev., 107, 17–46, 2016, doi: 10.1016/j.addr.2016.04.003.
- 72. Jung Y. et al., A poly(lactic acid)/calcium metaphosphate composite for bone tissue engineering. Biomaterials, 26(32), 6314–6322, 2005, doi: 10.1016/j.biomaterials.2005.04.007.
- 73. Kasuga T., H. Maeda, K. Kato, M. Nogami, K. I. Hata, and M. Ueda, Preparation of poly(lactic acid) composites containing calcium carbonate (vaterite). Biomaterials, 24(19), 3247–3253, 2003, doi: 10.1016/S0142-9612(03)00190-X.
- 74. Zhou J., Z. Yao, C. Zhou, D. Wei, and S. Li, Mechanical properties of PLA/PBS foamed composites reinforced by organophilic montmorillonite. J. Appl. Polym. Sci., 131(18), 9319–9326, 2014, doi: 10.1002/app.40773.
- 75. Kuan C.F., H.C. Kuan, C.C.M. Ma, and C.H. Chen, Mechanical and electrical properties of multi-wall carbon nanotube/poly(lactic acid) composites. J. Phys. Chem. Solids, 69(5–6), 1395–1398, 2008, doi: 10.1016/j.jpcs.2007.10.060.
- 76. Zhang Y., B. Deng, Q. Liu, and G. Chang, “Nonisothermal crystallization kinetics of poly(lactic acid)/nanosilica composites. J. Macromol. Sci. Part B Phys., 52(2), 334–343, 2013, doi: 10.1080/00222348.2012.701551.
- 77. M. Murariu, L. Bonnaud, P. Yoann, G. Fontaine, S. Bourbigot, and P. Dubois, New trends in polylactide (PLA)-based materials: ‘Green’ PLA-Calcium sulfate (nano)composites tailored with flame retardant properties. Polym. Degrad. Stab., 95(3), 374–381, 2010, doi: 10.1016/j.polymdegradstab.2009.11.032.
- 78. Wootthikanokkhan J, Cheachun T, Sombatsompop N, Thumsorn S, Kaabbuathong N, Wongta N, et al. Crystallization and thermomechanical properties of PLA composites: Effects of additive types and heat treatment. J Appl Polym Sci. 2013; 129(1): 215–23.
- 79. Liu M., Y. Zhang, and C. Zhou, Nanocomposites of halloysite and polylactide. Appl. Clay Sci., 75–76, 52–59, 2013, doi: 10.1016/j.clay.2013.02.019.
- 80. Barczewski M., K. Sałasińska, A. Kloziński, K. Skórczewska, J. Szulc, and A. Piasecki, Application of the Basalt Powder as a Filler for Polypropylene Composites With Improved Thermo-Mechanical Stability and Reduced Flammability. Polym. Eng. Sci., 59(2), E71–E79, 2019, doi: 10.1002/pen.24962.
- 81. Plackett D., T.L. Andersen, W.B. Pedersen, and L. Nielsen, Biodegradable composites based on L-polylactide and jute fibres. Compos. Sci. Technol., 63(9), 1287–1296, 2003, doi: 10.1016/S02663538(03)00100-3.
- 82. Wong S., R.A. Shanks, and A. Hodzic, Poly(Llactic acid) Composites With Flax Fibers Modified by Plasticizer Absorption. Polym. Eng. Sci., 43(9), 1566–1575, 2003, doi: 10.1002/pen.10132.
- 83. Tokoro R., D.M. Vu, K. Okubo, T. Tanaka, T. Fujii, and T. Fujiura, How to improve mechanical properties of polylactic acid with bamboo fibers. J. Mater. Sci., 43(2), 775–787, 2008, doi: 10.1007/s10853007-1994-y.
- 84. Mathew A.P., K. Oksman, and M. Sain, Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J. Appl. Polym. Sci., 97(5), 2014–2025, 2005, doi: 10.1002/app.21779.
- 85. Oksman K., M. Skrifvars, and J.F. Selin, Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos. Sci. Technol., 63(9), 1317– 1324, 2003, doi: 10.1016/S0266-3538(03)00103-9.
- 86. Sawpan M.A., K.L. Pickering, A. Fernyhough, N. Zealand, B. Engineering, and N. Zealand, Hemp Fibre Reinforced Poly(lactic acid) Composites Moyeenuddin A. Sawpan 1. Adv. Mater. Res., 29–30, 1–4, 2007, [Online]. Available: http://www. scientific.net/AMR.29-30.337.
- 87. Sawpan M.A., K.L. Pickering, and A. Fernyhough, Improvement of mechanical performance of industrial hemp fibre reinforced polylactide biocomposites. Compos. Part A Appl. Sci. Manuf., 42(3), 310– 319, 2011, doi: 10.1016/j.compositesa.2010.12.004.
- 88. Huda M.S., L.T. Drzal, A.K. Mohanty, and M. Misra, Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: A comparative study. Compos. Sci. Technol., 66(11–12), 1813–1824, 2006, doi: 10.1016/j.compscitech.2005.10.015.
- 89. Wan Y.Z., Y.L. Wang, X.H. Xu, and Q.Y. Li, In vitro degradation behavior of carbon fiber-reinforced PLA composites and influence of interfacial adhesion strength. J. Appl. Polym. Sci., 82(1), 150–158, 2001, doi: 10.1002/app.1834.
- 90. Frone A.N., S. Berlioz, J.-F. Chailan, D.M. Panaitescu, and D. Donescu, Cellulose fiber-reinforced polylactic acid. Polym. Compos., 32(6), 976–985, Jun. 2011, doi: 10.1002/pc.21116.
- 91. Huda M.S., A.K. Mohanty, L.T. Drzal, E. Schut, and M. Misra, ’Green’ composites from recycled cellulose and poly(lactic acid): Physico-mechanical and morphological properties evaluation. J. Mater. Sci., 40(16), 4221–4229, 2005, doi: 10.1007/ s10853-005-1998-4.
- 92. Czigány T., J.G. Kovács, and T. Tábi, Basalt Fiber Reinforced Poly(Lactic Acid) Composites for Engineering Applications. 19th Int. Conf. Compos. Mater., 4377–4384, [Online]. Available: http://real. mtak.hu/8877/1/Czigany_ICCM19_megjelent.pdf.
- 93. Matykiewicz D., M. Barczewski, and S. Michałowski, Basalt powder as an eco-friendly filler for epoxy composites: Thermal and thermomechanical properties assessment. Compos. Part B Eng., 164, 272–279, 2019, doi: 10.1016/j.compositesb.2018.11.073.
- 94. Jawaid M. and H.P.S. Abdul Khalil, Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydr. Polym., 86(1), 1–18, 2011, doi: 10.1016/j.carbpol.2011.04.043.
- 95. Kuciel S. and P. Romańska, Hybrid composites of polylactide with basalt and carbon fibers and their thermal treatment. Materials (Basel), 12(1), 2018, doi: 10.3390/ma12010095.
- 96. Pappu A., K.L. Pickering, and V.K. Thakur, Manufacturing and characterization of sustainable hybrid composites using sisal and hemp fibres as reinforcement of poly (lactic acid) via injection moulding. Ind. Crops Prod., 137, May, 260–269, 2019, doi: 10.1016/j.indcrop.2019.05.040.
- 97. Goriparthi B.K., K.N.S. Suman, and M.R. Nalluri, Processing and characterization of jute fiber reinforced hybrid biocomposites based on polylactide/ polycaprolactone blends. Polym. Compos., 33(2), 237–244, Feb. 2012, doi: 10.1002/pc.22145.
- 98. McNaught A.D. and A. Wilkinson, Compendium of Chemical Terminology (Gold Book). Int. Union Pure Appl. Chem., Oxford: Bl, 135–151, 1997, doi: 10.1002/9783527626854.ch7.
- 99. NatureWorks Products. https://www.natureworksllc.com/Products (accessed Jan. 05, 2021).
- 100. Auras R., B. Harte, and S. Selke, An Overview of Polylactides as Packaging Materials. Macromol. Biosci., 4(9), 835–864, 2004, doi: 10.1002/ mabi.200400043.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b26f132-90ba-41ab-a439-2b534adfce37