PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Hybrid Filler Oil Palm Boiler Ash – Bentonite on Thermal Characteristics of Natural Rubber Compounds

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The concept of hybrid fillers by combining several types of fillers, especially with the inclusion of nanoscale filler particles, has attracted the attention of many researchers. The addition of filler to the rubber compound can improve the thermal properties. This study aims to analyze the effect of filler hybrid oil palm boiler ash (OPBA) –bentonite on thermal characteristics natural rubber compounds. The coprecipitation method was used in preparing OPBA, and CTAB surfactant was added in bentonite preparation. Meanwhile, compound preparation was carried out by inserting SIR 20 into an open mill machine. Characterization was done by XRD, FTIR, SEM, mechanical and thermal properties. In general, the compounds did not show a change in peak position. Peaks of 2Ө = 44° and 64°. Bonds at 2849–2917 cm-1 were associated with asymmetric methyl stretching vibrations. The peaks of 1000–650 cm-1 showed C = C-H bending. The compound morphology shows torn lines with branching. Furthermore, in general, the mechanical properties of the compound increased with the addition of OPBA/bentonite filler. Differential Scanning Calorimetry compound data showed an increase in the number of peaks in the sample with 10 wt% filler.
Słowa kluczowe
EN
Twórcy
autor
  • Department of Physics, Universitas Sumatera Utara, 20155, Medan, Indonesia
autor
  • Department of Physics, Universitas Negeri Medan, 2022, Medan, Indonesia
  • Department of Electrical Engineering, Universitas Sumatera Utara, 20155, Medan, Indonesia
  • Universitas Quality Berastagi, 22153, Berastagi, Indonesia
Bibliografia
  • 1. Abdul Salim, Z.A.S., Hassan, A., Ismail, H. 2018. A Review on Hybrid Fillers in Rubber Composites. Polymer - Plastics Technology and Engineering, 57(6), 523–539. https://doi.org/10.1080/03602559.2017.1329432
  • 2. Abhisha, V.S., Augustine, A., Joseph, J., Thomas, S.P., Stephen, R. 2020. Effect of halloysite nanotubes and organically modified bentonite clay hybrid filler system on the properties of natural rubber. Journal of Elastomers and Plastics, 52(5), 432–452. https://doi.org/10.1177/0095244319865573
  • 3. Bao, Z., Tao, J., Flanigan, C. 2015. The Combination of Montmorillonite and Silica in Styrene–Butadiene Rubber/Polybutadiene Rubber Tread Compounds Zuguo. Polymer Composites, 38. https://doi.org/10.1002/pc.23653
  • 4. Bukit, B.F., Frida, E., Humaidi, S., Sinuhaji, P. 2022. Selfcleaning and antibacterial activities of textiles using nanocomposite oil palm boiler ash (OPBA), TiO2 and chitosan as coating. South African Journal of Chemical Engineering, 41(February), 105–110. https://doi.org/10.1016/j.sajce.2022.05.007
  • 5. Bukit, B.F., Frida, E., Humaidi, S., Sinuhaji, P., Bukit, N. 2022. Optimization of palm oil boiler ash biomass waste as a source of silica with various preparation methods. Journal of Ecological Engineering, 23(8), 193–199.
  • 6. Bukit, N., Ginting, E.M., Hutagalung, E.A., Sidebang, E., Frida, E., Bukit, B.F. 2019. Preparation and characterization of oil palm ash from boiler to nanoparticle. Reviews on Advanced Materials Science, 58(1), 195–200. https://doi.org/10.1515/rams-2019-0023
  • 7. Farida, E., Bukit, N., Ginting, E.M., Bukit, B.F. 2019. The effect of carbon black composition in natural rubber compound. Case Studies in Thermal Engineering, 16(November), 100566. https://doi.org/10.1016/j.csite.2019.100566
  • 8. Frida, E., Rahmat, F., Bukit, A., Bukit, F. 2022. Analysis structure and morphology of bentonite-Opba. Journal of Applied Research and Technology, 20, 117–125.
  • 9. Ginting, E.M., Bukit, N., Motlan, Saragih, M.T., Frida, E., Bukit, B.F. 2020. Analysis of natural rubber compounds with filler of Oil Palm Empty Bunches Powder and Carbon Black. Journal of Physics: Conference Series, 1428(1). https://doi.org/10.1088/1742-6596/1428/1/012024
  • 10. Ginting, E.M., Motlan, Bukit, N., Saragih, M.T., Sinaga, A.H., Frida, E. 2018. Preparation and Characterization of Oil Palm Empty Bunches Powder. Journal of Physics: Conference Series, 1120(1). https://doi.org/10.1088/1742-6596/1120/1/012004
  • 11. Idrus, S.S., Ismail, H., Palaniandy, S. 2011. Study of the effect of different shapes of ultrafine silica as fillers in natural rubber compounds. Polymer Testing, 30(2), 251–259. https://doi.org/10.1016/j.polymertesting.2010.10.002
  • 12. Ismail, H., Haw, F.S. 2010. Curing characteristics and mechanical properties of hybrid palm ash/silica/natural rubber composites. Journal of Reinforced Plastics and Composites, 29(1), 105–111. https://doi.org/10.1177/0731684408096423
  • 13. Kodal, M., Karakaya, N., Wis, A.A., Ozkoc, G. 2019. Thermal properties (DSC, TMA, TGA, DTA) of rubber nanocomposites containing carbon nanofillers. In Carbon-Based Nanofillers and Their Rubber Nanocomposites: Fundamentals and Applications. Elsevier Inc. https://doi.org/10.1016/B978-0-12-817342-8.00011-1
  • 14. Panitchakarn, P., Wikranvanich, J., Phisalaphong, M. 2019. Synthesis and characterization of natural rubber/coal fly ash composites via latex aqueous microdispersion. Journal of Material Cycles and Waste Management, 21(1), 134–144. https://doi.org/10.1007/s10163-018-0774-x
  • 15. Rahmaniar, Amin, R., Gatot, P., Basuni, H. 2015. Characterization of the rubber compound with extract of caesalpinia sappan wood, quartz sand and shell using. Jurnal Teknologi Industri Pertanian, 25(3), 227–238.
  • 16. Sadhu, S., Bhowmick, A.K. 2004. Preparation and properties of nanocomposites based on acrylonitrile-butadiene rubber, styrene-butadiene rubber, and polybutadiene rubber. Journal of Polymer Science, Part B: Polymer Physics, 42(9), 1573–1585. https://doi.org/10.1002/polb.20036
  • 17. Senthivel, K., Manikandan, K., Prabu, B. 2015. Studies on the Mechanical Properties of Carbon Black/Halloysite Nanotube Hybrid Fillers in Nitrile Rubber Nanocomposites. Materials Today: Proceedings, 2(4–5), 3627–3637. https://doi.org/10.1016/j.matpr.2015.07.118
  • 18. Stöckelhuber, K.W., Das, A., Jurk, R., Heinrich, G. 2010. Contribution of physico-chemical properties of interfaces on dispersibility, adhesion and flocculation of filler particles in rubber. Polymer, 51(9), 1954–1963. https://doi.org/10.1016/j.polymer.2010.03.013
  • 19. Thongsang, S., Vorakhan, W., Wimolmala, E., Sombatsompop, N. 2012. Dynamic mechanical analysis and tribological properties of NR vulcanizates with fly ash/precipitated silica hybrid filler. Tribology International, 53, 134–141. https://doi.org/10.1016/j.triboint.2012.04.006
  • 20. Wang, Z., Liu, J., Wu, S., Wang, W., Zhang, L. 2010. Novel percolation phenomena and mechanism of strengthening elastomers by nanofillers. Physical Chemistry Chemical Physics, 12(12), 3014–3030. https://doi.org/10.1039/b919789c
  • 21. Xu, T., Jia, Z., Luo, Y., Jia, D., Peng, Z. 2015. Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites. Applied Surface Science, 328, 306–313. https://doi.org/10.1016/j.apsusc.2014.12.029
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b23a37f-7390-4690-85f3-268b4921f7db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.