PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Coal fly ash supported nZnO for the sorption of triphenyltin chloride

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A laboratory study was performed to study the effects of various operating factors, viz. adsorbent dose, contact time, solution pH, stirring speed, initial concentration and temperature on the adsorption of triphenyltin chloride (TPT) onto coal fly ash supported nZnO (CFAZ). The adsorption capacity increases with increase in the adsorbent amount, contact time, pH, stirring speed and initial TPT concentration, and decrease with increase in the solution temperature. The adsorption data have been analyzed by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) adsorption models to determine the mechanistic parameters associated with the adsorption process while the kinetic data were analyzed by pseudo first-order, pseudo second-order, Elovich, fractional power and intraparticle diffusivity kinetic models. The thermodynamic parameters of the process were also determined. The results of this study show that 0.5 g of CFAZ was able to remove up to 99.60% of TPT from contaminated natural seawater at 60 min contact time, stirring speed of 200 rpm and at a pH of 8. It was also found that the equilibrium and kinetic data fitted better to Freundlich and pseudo second-order models, respectively. It can therefore be concluded that CFAZ can be effectively used for shipyard process wastewater treatment.
Rocznik
Strony
59--71
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
  • Federal University Oye Ekiti, Nigeria Department of Industrial Chemistry
autor
  • Cape Peninsula University of Technology, South Africa Faculty of Applied Sciences Department of Chemistry
  • University of Ilorin, Nigeria Department of Chemistry
autor
  • Cape Peninsula University of Technology, South Africa Faculty of Applied Sciences Department of Chemistry
  • Cape Peninsula University of Technology, South Africa Faculty of Applied Sciences Department of Chemistry
autor
  • University of the Western Cape, South Africa Department of Chemistry
Bibliografia
  • [1] Aboul-Kassim, T.A.T. & Simoneit, B.R.T. (2001). Sorption/desorption of organic pollutants from complex mixtures: Modeling, kinetics, experimental techniques and transport parameters, The Handbook of Environmental Chemistry, 5, Part E, pp. 1-74 Springer-Verlag, Berlin 2001.
  • [2] Ada, K., Ergene, A., Tan, S. & Yalcin, E. (2009). Adsorption of remazol brilliant blue R using ZnO fine powder: equilibrium, kinetic and thermodynamic modeling studies, Journal of Hazardous Materials, 165, pp. 637-644.
  • [3] Annadurai, G., Juang, R.S. & Lee, D.J. (2002). Use of cellulose based wastes for adsorption of dyes from aqueous solutions, Journal of Hazardous Materials, 92, pp. 263-274.
  • [4] Ayanda, O.S., Fatoki, O.S., Adekola, F.A. & Ximba, B.J. (2012a). Characterization of fly ash generated from Matla power station in Mpumalanga, South Africa, E-Journal of Chemistry, 9, pp. 1788-1795.
  • [5] Ayanda, O.S., Fatoki, O.S., Adekola, F.A. & Ximba, B.J. (2012b). Fate and remediation of organotin compounds in seawaters and soils, Chemical Science Transactions, 1, pp. 470-481.
  • [6] Ayanda, O.S., Fatoki, O.S., Adekola, F.A. & Ximba, B.J. (2013a). Removal of tributyltin from shipyard process wastewater by fly ash, activated carbon and fly ash/activated carbon composite: Adsorption models and kinetics, Journal of Chemical Technology and Biotechnology, 88, pp. 2201-2208.
  • [7] Ayanda, O.S., Fatoki, O.S., Adekola, F.A. & Ximba, B.J. (2013b). Utilization of nSiO2, fly ash and nSiO2/fly ash composite for the remediation of triphenyltin (TPT) from contaminated seawater, Environmental Science and Pollution Research, 20, pp. 8172-8181.
  • [8] Basha, S. & Murthy, Z.V.P. (2007). Kinetics and equilibrium models for biosorption of Cr(VI) on chemically modified seaweeds, Cystoseira indica, Process Biochemistry, 42, pp. 1521-1529.
  • [9] Bazrafshan, E., Mostafapour, F.K. & Zazouli, M.A. (2012). Methylene blue (cationic dye) adsorption into Salvadora persica stems ash, African Journal of Biotechnology, 11, pp. 16661-16668.
  • [10] Boparai, H.K., Joseph, M. & O’Carroll, D.M. (2010). Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles, Journal of Hazardous Material, 186, pp. 458-465.
  • [11] Golub, M. & Doherty, J. (2004). Triphenyltin as a potential human endocrine disruptor, Journal of Toxicology and Environmental Health Part B, 281-295.
  • [12] Dunens, O.M., Mackenzie, K.J. & Harris, A.T. (2009). Synthesis of multiwalled carbon nanotubes on fly ash derived catalysts, Environmental Science and Technology, 43, pp. 7889-7894.
  • [13] Fatoki, O.S., Ayanda, O.S., Adekola, F.A., Ximba, B.J. & Opeolu, B.O. (2012). Preparation and characterization of activated carbon - nFe3O4, activated carbon - nSiO2 and activated carbon - nZnO hybrid materials, Particle and Particle Systems Characterization, 29, pp. 178-191.
  • [14] Han, Z., Du, T. & Zhao, Y. (2007). Adsorption of triphenyltin chloride on modified chitosan, Journal of Agro-Environment Science, 5, pp. 1992-1995.
  • [15] Juan, R., Hernandez, S., Querol, X., Andres, J.M. & Moreno, N. (2002). Zeolite material synthesized from fly ash: Use as cationic exchanger, Journal of Chemical Technology and Biotechnology, 77, pp. 299-304.
  • [16] Nascimento, N., Soares, P.S.M. & Souza, V.P. (2009). Adsorption of heavy metal cations using coal fly ash modified by hydrothermal method, Fuel, 88, pp. 1714-1719.
  • [17] Nath, D.C.D, Bandyopadhyay, S., Boughton, P., Yu, A., Blackburn, D. & White, C. (2010a). High strength biodegradable poly(vinyl alcohol)/fly ash composite films, Journal of Applied Polymer Science, 117, pp. 114-121.
  • [18] Nath, D.C.D., Bandyopadhyay, S., Campbell, J., Yu, A., Blackburn, D. & White, C. (2010b). Surface- -coated fly ash reinforced biodegradable poly(vinyl alcohol) composite films: Part 2-analysis and characterization, Applied Surface Science, 257, pp. 1216-1221.
  • [19] Papandreou, A., Stournaras, C.J. & Panias, D. (2007). Copper and cadmium adsorption on pellets made from fired coal fly ash, Journal of Hazardous Materials, 148, pp. 538-547.
  • [20] Penilla, P.R., Bustos, A.G. & Elizalde, S.G. (2006). Immobilization of Cs, Cd, Pb and Cr by synthetic zeolites from Spanish low-calcium coal fly ash, Fuel, 85, pp. 823-832.
  • [21] Poursaberi, T., Konoz, E., Sarrafi , A.H.M., Hassanisadi, M. & Hajifathli, F. (2012). Application of nanoscale zero-valent iron in the remediation of DDT from contaminated water, Chemical Science Transactions, 1, pp. 658-668.
  • [22] Querol, X., Moreno, N., Umana, J.C., Alastuey, A., Hernandez, E., Lopez-Soler, A. & Plana, F. (2002). Synthesis of zeolites from coal fly ash: an overview, International Journal of Coal Geology, 50, pp. 413-423.
  • [23] Rohatgi, P.K., Gupta, N. & Alaraj, S. (2006). Thermal expansion of aluminum-fly ash cenosphere composites synthesized by pressure infiltration technique, Journal of Composite Materials, 40, pp. 1163-1173.
  • [24] Salehi, R., Arami, M., Mahmoodi, N.M., Bahrami, H. & Khorramfar, S. (2010). Novel biocompatible composite (chitosan-zinc oxide nanoparticle): preparation, characterization and dye adsorption properties, Colloids and Surfaces B, 80, pp. 86-93.
  • [25] Wang, S. (2008). Application of solid ash based catalysts in heterogeneous catalysis, Environmental Science and Technology, 42, pp. 7055-7063.
  • [26] Wang, S., Ma, Q. & Zhu, Z.H. (2008). Characteristics of coal fly ash and adsorption application, Fuel, 87, pp. 3469-3473
  • [27] Wei, L., Wang, K., Zhao, Q., Xie, C., Qiu, W. & Jia, T. (2011). Kinetics and equilibrium of adsorption of dissolved organic matter fractions from secondary effluent by fly ash, Journal of Environmental Sciences, 23, pp. 1057-1065.
  • [28] Yue, X., Duan, W., Lu, Y., Zhang, F. & Zhang, R. (2011). Effect of ZnO loading technique on textural characteristic and methyl blue removal capacity of exfoliated graphite/ZnO composites, Bulletin of Materials Science, 34, pp. 1569-1573.
  • [29] Zhang, F., Zhao, Z., Tan, R., Guo, Y., Cao, L., Chen, L., Li, J., Xu, W., Yang, Y. & Song, W. (2012). Selective and effective adsorption of methyl blue by barium phosphate nano-flake, Journal of Colloid Interface Science, 386, pp. 277-284
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b237c06-6b36-49b3-ad62-cc12557d8ccb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.