PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification of Homogeneous Regions of Specific Minimum Flows in the State of Goiás, Brazil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hydrological information is essential for adequate water resources management as well as for water supply, energy supply, water allocation, among other services. However, this information does not always exist in quantity and quality to be used in hydrological or water management studies, and alternative methods are required to estimate minimum flows. Estimation based on homogeneous regions enables to transfer observation data from a known location to a location without data, but in the same region. Since the fluviometric stations in the state of Goiás (Brazil) are not uniformly distributed, the present work aimed at delimiting homogeneous regions of minimum flows, using the cluster grouping method with the K-means algorithm.Thus, 71 fluviometric stations with at least 5 years of continuous data were selected, obtained from the HIDROWEB system. In addition to the observed data, other variables were considered, such as drainage area, perimeter, specific minimum flows Q7,10, Q90, Q95 and average slope. The use of all these variables together with the observed data made it possible to determine,with great accuracy, 5 homogeneous regions of minimum flows based on the cluster analysis, enabling to obtain the minimum flows of reference for each region.In the selected homogeneous regions, it was possible to observe that the regions with the highest values of average slope presented smaller minimum flows, and the same could be observed under inverse conditions, i.e., lower values of average slope had higher minimum flows.It is also noteworthy that river monitoring is deficient in the center-south and center-north parts of the state of Goiás, making water resources management difficult. This fact indicates, therefore, the need to expand the river monitoring system throughout the state, especially in its southern and northern regions.
Rocznik
Strony
357--367
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
autor
  • School of Civil and Environmental Engineering, Federal University of Goiás, Av. Universitária, Quadra 86, Lote Área 1488 - Setor Leste Universitário, Goiânia 74605-220, Goiás, Brazil
  • PPGEAS, School of Civil and Environmental Engineering, Federal University of Goiás, 74000-000 Goiânia, Goiás, Brazil
  • School of Civil and Environmental Engineering, Federal University of Goiás, Av. Universitária, Quadra 86, Lote Área 1488 - Setor Leste Universitário, Goiânia 74605-220, Goiás, Brazil
  • School of Civil and Environmental Engineering, Federal University of Goiás, Av. Universitária, Quadra 86, Lote Área 1488 - Setor Leste Universitário, Goiânia 74605-220, Goiás, Brazil
  • CIAMB, Federal University of Goiás, Avenida Esperança s/n, Câmpus Samambaia - Prédio da Reitoria, Goiânia 74690-900, Goiás, Brazil
  • School of Civil and Environmental Engineering, Federal University of Goiás, Av. Universitária, Quadra 86, Lote Área 1488 - Setor Leste Universitário, Goiânia 74605-220, Goiás, Brazil
  • CIAMB, Federal University of Goiás, Avenida Esperança s/n, Câmpus Samambaia - Prédio da Reitoria, Goiânia 74690-900, Goiás, Brazil
  • Department of Civil Engineering and Architecture, GeoBioTec, University of Beira Interior, Calcada Fonte do Lameiro 6, 6200-358 Covilhã, Portugal
  • FibEnTech, GeoBioTec-UBI, University of Beira Interior, Calcada Fonte do Lameiro 6, 6200-358 Covilhã, Portugal
  • Department of Civil Engineering and Architecture, GeoBioTec, University of Beira Interior, Calcada Fonte do Lameiro 6, 6200-358 Covilhã, Portugal
  • FibEnTech, GeoBioTec-UBI, University of Beira Interior, Calcada Fonte do Lameiro 6, 6200-358 Covilhã, Portugal
  • School of Civil and Environmental Engineering, Federal University of Goiás, Av. Universitária, Quadra 86, Lote Área 1488 - Setor Leste Universitário, Goiânia 74605-220, Goiás, Brazil
  • PPGEAS, School of Civil and Environmental Engineering, Federal University of Goiás, 74000-000 Goiânia, Goiás, Brazil
  • CIAMB, Federal University of Goiás, Avenida Esperança s/n, Câmpus Samambaia - Prédio da Reitoria, Goiânia 74690-900, Goiás, Brazil
  • FibEnTech, GeoBioTec-UBI, University of Beira Interior, Calcada Fonte do Lameiro 6, 6200-358 Covilhã, Portugal
Bibliografia
  • 1. Araújo-Neto, J.R.; Palácio, H.A.Q.; Andrade, E.M.; Santos, J.C.N.; Pinheiro, E.A.R., 2012. Optimization of the cuver number (Cn-Scs) for different manajegement in a semarid region, Ceará, Brasil. Revista IRRIGA – Brazilian Journal of Irrigation and Drainage, Edição Especial,v. 1, (1), 264-279. https://doi.org/10.15809/irriga.2012v1n01p264
  • 2. Araújo, A. P.; Rocha, P. C. Regime de fluxo e alterações hidrológicas no rio Tibagi-bacia do rio Paranapanema / Alto Paraná. Revista de Geografia, v. 7, n. 3, 2010.
  • 3. Aytaç, E., 2020. Unsupervised learning approach in defining the similarity of catchments: Hydrological response unit based k-means clustering, a demonstration on Western Black Sea Region of Turkey. International Soil and Water Conservation Research v. 8, (3), 321-331. https://doi.org/10.1016/j.iswcr.2020.05.002
  • 4. Basso, R.; Honório, M.; Costa, I.; Bezerra, N.; Baumann, L.; Silva, F.; Albuquerque, A.; Scalize, P. Comparison between Regionalized Minimum Reference Flow and On-Site Measurements in Hydrographic Basins of Rural Communities in the State of Goiás, Brazil. Water 2022, 14, 1016. https://doi.org/10.3390/w14071016
  • 5. Beskow, S.; Norton, L.; Mello, C. Hydrological prediction in a tropical watershed dominated by Oxisols using a distributed hydrological model. Water Resour. Manag. 2013, 27, 341–363.
  • 6. Borges, V.R.P. Comparação entre as técnicas de agrupamento K-Means e Fuzzy C-Means para Segmentação de Imagens Coloridas. VIII Encontro Anual de Computação Out (2010). (Accessed Jul., 2020) at: https://www.enacomp.com.br/2010/anais/artigos/completos/enacomp2010_42.pdf
  • 7. Brasil (1997). Lei nº 9.433, de 8 de janeiro de 1997. Institui a Política Nacional de Recursos Hídricos, cria o Sistema Nacional de Gerenciamento de Recursos Hídricos e dá outras providências. Diário Oficial da União: seção 1. Brasília – DF, p. 470-474, 9 jan. 1997. Disponível em: https://www.planalto.gov.br/ccivil_03/leis/l9433.htm. Acesso em: 15 out. 2020.
  • 8. Burn, D.H., 1989. Cluster analysis as applied to regional flood frequency. Journal of Water Resources Planning and Management, v. 115, (5), 567-582. https://doi.org/10.1061/(ASCE)0733-9496(1989)115:5(567)
  • 9. Bussab, W.O.; Miazak, E.S.; Andrade, D.F., 1990. Introdução à análise de agrupamentos. 9º Simpósio Brasileiro de Probabilidade e Estatística. São Paulo: IME – USP. (Accessed Feb 1, 2022) at https://cicerocq.files.wordpress.com/2019/05/analise-deagrupamento_bussab.pdf
  • 10. Cupak, A.; Walega, A.; Michalec, B., 2017. Cluster analysis in determination of hydrologically homogeneous regions with low flow. Acta Scientiarum Polonorum Formatio Circumiectus, v. 16, (1), 53–63. http://dx.doi.org/10.15576/ASP.FC/2017.16.1.53
  • 11. Demirel, M.C.; Mariano, A.J.; Kahya, E., 2007. Performing k-means analysis to drought principal components of Turkish rivers. Hydrology Days, v. 1, 145-151. http://dx.doi.org/10.25675/10217/200671
  • 12. Dikbas, F., Firat, M., Koc, A.C.; Gungor, M., 2013. Defining homogeneous regions for streamflow processes in Turkey using a K-means clustering method. Arabian Journal for Science and Engineering, v. 38, 1313–1319. https://doi.org/10.1007/s13369-013-0542-0
  • 13. Elesbon, A.A.A.; Silva, D.D.; Sediyama, G.C.; Guedes, H.A.S.; Ribeiro, C.A.A.S.; Ribeiro, C.B. M. Multivariate statistical analysis to support the minimum stream flow regionalization. EngenhariaAgrícola, v. 35, n. 5, 2015, 838-851 p
  • 14. Eslamian, S.; Biabanaki, M. Low flow regionalization modeling. International Journal of Ecological Economics & Statistics, v. 12, n.F08,p. 82-97, 2008.
  • 15. Farsadnia, F.; Kamrood, M.S.; Nia, A.M.; Modarres, R.; Bray, M.T.; Han, D.; Sadatinejad, J., 2014. Identification of homogeneous regions for regionalization of watersheds by two-level self-organizing feature maps. Journal of Hydrology, v. 509, 387–397. https://doi.org/10.1016/j.jhydrol.2013.11.050
  • 16. Gaál, L.; Szolgay, J.; Lapin, M.; Fasko, P., 2009. Hybrid approach to delineation of homogeneous regions for regional precipitation frequency analysis. Journal of Hydrology and Hydromechanics, v . 57, (4), 226-249. https://doi.org/10.2478/v10098-009-0021-1
  • 17. Goiás (2019). Estabelece o regulamento do sistema de outorga das águas de domínio do estado de Goiás e dá outras providências. Conselho Estadual de Recursos Hídricos. Resolução nº 22 de 2019, Goiás, Brazil.
  • 18. Goiás (2019). Secretaria de Estado de Meio Ambiente e Desenvolvimento Sustentável. Resolução nº 09 de 2005. Estabelece o Regulamento do Sistema de outorga das águas de domínio do Estado de Goiás e dá outras providências. Publicado no Diário Oficial do Estado de Goiás n.º 19.653, de 02/06/2005, Goiás, Brazil.
  • 19. Goiás (2016). Plano Estadual de Recursos Hídricos do Estado de Goiás. Secretaria de Estado de Meio Ambiente, Recursos Hídricos, Infraestrutura, Cidades e Assuntos Metropolitanos, 2016, SECIMA, Goiás, Brazil.
  • 20. Gomes, E.P.; Blanco, C.J.C.; Pessoa, F.C.L., 2018. Identification of homogeneous precipitation regions via Fuzzy c-means in the hydrographic region of Tocantins–Araguaia of Brazilian Amazonia. Applied Water Science, v. 9, (6), 1-12. https://doi.org/10.1007/s13201-018-0884-6
  • 21. Granemann, A. R. B., Mine, M. R. M., Kaviski, E. Frequency analysis of minimum flows. Brazilian, Journal of Water Resources, v. 23, e17, p. 1–14, 2018.
  • 22. Hall, M.J.; Minns, A.W., 1999.The classification of hydrologically homogeneous regions. Hydrological Sciences Journal, v. 44, (5), 693-704. https://doi.org/10.1080/02626669909492268
  • 23. Honório, M. S. Avaliação da disponibilidade hídrica superficial no estado de Goiás. Dissertação (Mestrado em Ciências Ambientais) - Universidade Federal de Goiás, Pró Reitoria de Pós-graduação (PRPG), Goiânia, 2020.
  • 24. Hosking, J.; Wallis, J., 1997. Identification of homogeneus regions. Regional Frequency Analysis: An Approach Based on L-Moments. Cambridge: Cambridge University Press, 54-72. https://doi.org/10.1017/CBO9780511529443
  • 25. IBGE, 2020. Área territorial Brasileira. Instituto Brasileiro de Geografia e Estatística, (Accessed Feb 1, 2022) at: https://cidades.ibge.gov.br/brasil/go/panorama
  • 26. IBGE, 2021. Diretoria de Pesquisas, Coordenação de População e Indicadores Sociais, Estimativas da população residente com data de referência 1o de julho de 2021. Instituto Brasileiro de Geografia e Estatística (Accessed Feb 1, 2022) at: https://cidades.ibge.gov.br/brasil/go/panorama
  • 27. Kahya, E.; Demirel, M.C.; Piechota, T.C., 2007. Spatial grouping of annual streamflow patterns in Turkey. Hydrology Days, v.1, 169-176. http://dx.doi.org/10.13140/RG.2.1.2999.7849
  • 28. Kazemzadeh, M.; Malekian, A., 2018. Homogeneity analysis of streamflow records in arid and semiarid regions of northwestern Iran. Journal of Arid Land, v. 10, (4), 493–506. https://doi.org/10.1007/s40333-018-0064-4
  • 29. Kim, D.; Jung, I.; Chun, J.A., 2016. A comparison between parameter regionalization and model calibration with flow duration curves for prediction in ungauged catchments. Hydrology and Earth System Sciences Discussions, v. 5, (8), 1-29. http://dx.doi.org/10.5194/hess-2016-487
  • 30. Lücke, J.; Forster, D., 2019. k-means as a variational EM approximation of Gaussian mixture models. Pattern Recognition Letters, v. 125, 349-356. https://doi.org/10.1016/j.patrec.2019.04.001.
  • 31. Maciel, A. L.; Vieira, E. M.; Monte Mor, R. C.; Vasques, A. C. Regionalização e espacialização de vazões de permanência: Estudo aplicado na bacia do rio Piracicaba - MG. Revista Brasileira de Climatologia, v. 24, p. 114–133, 2019.
  • 32. Nadoushani, S.S.M.; Dehghanian, N.; Saghafian, B., 2018. A fuzzy hybrid clustering method for identifying hydrologic homogeneous regions. Journal of Hydroinformatics, v. 20, (6), 1367–1386. https://doi.org/10.2166/hydro.2018.004
  • 33. Nathan, R.J.; McMahon, T.A., 1990. Identification of homogeneous regions for the purposes of regionalisation. Journal of Hydrology, v. 121, 217-238. Disponível em: https://doi.org/10.1016/0022-1694(90)90233-N
  • 34. Nogueira, S. H. M. Avaliação do risco à perda da qualidade ambiental do aquífero freático na região metropolitana de Goiânia. Dissertação de Mestrado. Programa de Pós-graduação em Ciências do Ambiente, UFG, Goiânia. 2017.
  • 35. Pruski, F. F.; Nunes, A. A.; Rego, F. S.; Souza, M. F. Extrapolação de equações de regionalização de vazões mínimas: Alternativas para atenuar os riscos. Water Resources and Irrigation Management, v. 1, n. 1, p. 51-59, 2012. doi.org/10.3390/rs12172735
  • 36. Razavi, T.; Coulibaly, P., 2013. Streamflow Prediction in Ungauged Basins: Review of Regionalization Methods. Journal of Hydrologic Engineering, v. 18, 958-975. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000690
  • 37. Samuel, J.; Coulibaly, P.; Metcalfe, R. A. Estimation of continuous streamflow in Ontario ungauged basins: Comparison of regionalization methods. Journal of Hydrologic Engineering, v. 16, p.447, 2011.
  • 38. Seidel, E.J.; Moreira Júnior, F.J.; Ansuj, A.P.; Noal, M.R.C., 2008. Comparação entre o método Ward e o método K-médias no agrupamento de produtores de leite. Ciência e Natura, v. 30, (1), 7- 15. https://doi.org/10.5902/2179460X9737
  • 39. Silva, A. C., 2018. Identificação de regiões hidrologicamente homogêneas por agrupamento fuzzy c-means no estado do Paraná. Dissertação de Mestrado, Programa de Pós-Graduação em Engenharia Agrícola, UNIOESTE, Cascavel – Paraná. (Accessed Feb 1, 2022) at: http://131.255.84.103/bitstream/tede/3760/5/Ana%20Claudia_Silva2018.pdf.
  • 40. Smakhtin, V. U. Low flow hydrology: a review. Journal of hydrology, v. 240, n. 3-4, p. 147-186, 2001.
  • 41. Souza, Jr. C.M.; Shimbo, J.Z; Rosa, M.R; Parente, L.L.; Alencar, A.A; Rudorff, B.F.T.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G; Souza-Filho, P.W.M.; Oliveira, S.W.; Rocha, W.F.; Monteiro, D.; Rosa, E.R.; Vélez-Martin, C.; Weber, E.J.; Lenti, F.E.B.; Paternost, F.F.; Pareyn, F.G.C.; Siqueira, J.V.; Viera, J.L.; Ferreira Neto, L.C.; Saraiva, M.M.; Sales, M.H.; Salgado, M.P.G.; Vasconcelos, R.; Galano, S.; Mesquita, V.V.; Azevedo, T., 2020. Reconstructing three decades of land use and land cover changes in brazilian biomes with landsat archive and earth engine. Remote Sensing, v.12, Issue 17. https://doi.org/10.3390/rs12172735
  • 42. Tucci, C.; Silveira, A.; Sanchez, J.; Albuquerque, F., 1995. Flow regionalization in the upper Paraguay basin, Brazil. Hydrological Sciences Journal, v. 40, (4), 485-497. https://doi.org/10.1080/02626669509491434
  • 43. Tucci, C.E.M., 2001. Regionalização de vazões. In: Tucci, C.E.M. Hidrologia: ciência e aplicação. 2. ed. Porto Alegre: Editora da UFRGS, p. 573-611.
  • 44. WMO (2008). Guide to Hydrological Practice Hydrology – From Measurement to Hydrological Information. Sixth edition. World Meteorological Organization, Geneva, Switzerland, v. 1, (168), p.296. (Accessed Feb 1, 2022) at: https://library.wmo.int/doc_num.php?explnum_id=10473
  • 45. Wu, H.Q., Huang, Q., Xu, W., Xi, S.F., 2015. Application of K-Means Cluster and rough set in classified real-time flood forecasting. Advanced Materials Research, v. 1092–1093, 734–741. https://doi.org/10.4028/www.scientific.net/amr.1092-1093.734.
  • 46. Zhang, Z.; Stadnyk, T.A., 2020. Investigation of attributes for identifying homogeneous flood regions for regional flood frequency analysis in Canada. Water, v. 12, (9), 1-24. https://doi.org/10.3390/w12092570
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b2263e1-f3a9-427e-b881-c1946dfdae09
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.