PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Heat Treatment on the Microstructure and Tensile Deformation Behavior of Oxide Dispersion Strengthened Alloys Manufactured by Complex Milling Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study attempted to manufacture an ODS alloy by combining multiple milling processes in mechanical alloying stage to achieve high strength and fracture elongation. The complex milling process of this study conducted planetary ball milling, cryogenic ball milling and drum ball milling in sequential order, and then the microstructure and tensile deformation behavior were investigated after additional heat treatment. The oxide particles distributed within the microstructure were fine oxide particles of 5~20 nm and coarse oxide particles of 100~200 nm, and the oxide particles were confirmed to be composed of Cr, Ti, Y and O. Results of tensile tests at room temperature measured yield strength, tensile strength and elongation as 1320 MPa, 2245 MPa and 4.2%, respectively, before heat treatment, and 1161 MPa, 2020 MPa and 5.5% after heat treatment. This results indicate that the ODS alloy of this study gained very high strengths compared to other known ODS alloys, allowing greater plastic zones.
Twórcy
autor
  • Inha University, 100 Inha-Ro, Incheon, 22212, Korea
autor
  • Dept. of Advanced Materials Engineering, Hanbat National University, Daejeon-Si, Korea (Republic of)
autor
  • Korloy Inc., 55 Sandan-Ro, Cheongju-Si, 28589, Korea
autor
  • Inha University, 100 Inha-Ro, Incheon, 22212, Korea
Bibliografia
  • [1] A. Hirata, T. Fujita, Y.R. Wen, J.H. Schneibel, C.T. Liu, M.W. Chen, Nat. Mater. 23, 1 (2011).
  • [2] V.V. Sagaradze, K.A. Kozlov, N.V. Kataeva, A.V. Litvinov, V.A. Shabashov, Phys. Metal. Metall. 113, 372 (2012).
  • [3] S. Ukai, M. Fujiwara, J. Nucl. Mater. 307-311, 749 (2002).
  • [4] J.H. Gwon, J.H. Kim, K.A. Lee, J. Nucl. Mater. 459, 205 (2015).
  • [5] X.K. Zhu, X. Zhang, H. Wang, A.V. Sergueeva, A.K. Mukherjee, R.O. Scattergood, J. Narayan, C.C. Koch, Scripta Mater. 49, 429 (2003).
  • [6] C. Tiwary, A. Verma, S. Kashyp, K. Biswas, K. Chattopadhyay, Metall. Mater. Trans. A 44, 1917 (2013).
  • [7] H.K.D.H. Bhadeshia, Mater. Sci. Eng. A 223, 64 (1997).
  • [8] M. Dade, J. Malaplate, J. Garnier, F.D. Geuser, N. Lochet, A. Deschamps, J. Nucl. Mater. 472, 143 (2016).
  • [9] J.H. Kim, T.S. Byun, D.T. Hoelzer, J. Nucl. Mater. 407, 143 (2010).
  • [10] C.W. Park, J.M. Byun, J.K. Park, Y.D. Kim, J. Korean Powder Metall. Inst. 23, 61 (2016).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b1e8b2f-80ac-4d64-98fe-655359d6841a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.